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Hahn G, Petermann T, Havenith MN, Yu S, Singer W, Plenz D,
Nikoli¢ D. Neuronal avalanches in spontaneous activity in vivo. J
Neurophysiol 104: 000—000, 2010. First published July 14, 2010;
doi:10.1152/jn.00953.2009. Many complex systems give rise to
events that are clustered in space and time, thereby establishing a
correlation structure that is governed by power law statistics. In the
cortex, such clusters of activity, called “neuronal avalanches,” were
recently found in local field potentials (LFPs) of spontaneous activity
in acute cortex slices, slice cultures, the developing cortex of the
anesthetized rat, and premotor and motor cortex of awake monkeys.
At present, it is unclear whether neuronal avalanches also exist in the
spontaneous LFPs and spike activity in vivo in sensory areas of the
mature brain. To address this question, we recorded spontaneous LFPs
and extracellular spiking activity with multiple 4 X 4 microelectrode
arrays (Michigan Probes) in area 17 of adult cats under anesthesia. A
cluster of events was defined as a consecutive sequence of time bins
At (1-32 ms), each containing at least one LFP event or spike
anywhere on the array. LFP cluster sizes consistently distributed
according to a power law with a slope largely above —1.5. In two
thirds of the corresponding experiments, spike clusters also displayed
a power law that displayed a slightly steeper slope of —1.8 and was
destroyed by subsampling operations. The power law in spike clusters
was accompanied with stronger temporal correlations between spiking
activities of neurons that spanned longer time periods compared with
spike clusters lacking power law statistics. The results suggest that
spontaneous activity of the visual cortex under anesthesia has the
properties of neuronal avalanches.

INTRODUCTION

Neurons in primary sensory cortices display firing even in
the absence of sensory stimulation. Previously, this spontane-
ous activity was considered to be noise, discharges of single
neurons being stochastic and uncorrelated (Shadlen and New-
some 1998). Recently, this view was challenged by several
studies using voltage-sensitive dye imaging ( Arieli et al. 1995)
and intracellular recordings (Bringuier et al. 1999), suggesting
that spontaneous neuronal activity is coherent and correlated
within a large cortical area. Activity in different brain areas is
linked through a cascade of synaptic inputs that propagates in
a wave-like fashion from one cortical site to another (see Wu
et al. 2008 for a review). Such activity propagation was shown
in both anesthetized and awake animals (Ferezou et al. 2007;
Petersen et al. 2003; Xu et al. 2007) Notably, these waves
exhibit different sizes (Petersen et al. 2003) and organize in
diverse spatiotemporal patterns (Tsodyks et al. 1999), which
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resemble underlying functional maps (Kenet et al. 2003). It
was also shown that these spontaneous waves influence the
response to sensory inputs (Ferezou et al. 2007; Petersen et al.
2003) and can account for the variability of evoked activity
(Arieli et al. 1996), indicating a pivotal role of spontaneous
activity in processing sensory information.

Recently, another type of correlated spontaneous neuronal
activity was described in cortical tissue. Beggs and Plenz
(2003) found that negative deflections in local field potential
signals (nLFP) can propagate in neuronal cultures and acute
cortical slices in a nonwave (i.e., noncontiguous) fashion.
These cascades of nLFPs, dubbed neuronal avalanches, form
spatiotemporal clusters of synchronized activity interrupted by
periods of silence and, as shown later in vivo (Gireesh and
Plenz 2008), can coexist with theta and beta/gamma oscilla-
tions. Furthermore, nLFPs can propagate across many milli-
meters of the cortex and display long-range temporal correla-
tions, thereby establishing complex spatiotemporal patterns
(Beggs and Plenz 2004). Neuronal avalanches emerge during
the earliest time of the development of superficial layers in
cortex (Gireesh and Plenz 2008; Stewart and Plenz 2008), and
their emergence requires a balance of excitatory and inhibitory
transmission as well as the presence of the neuromodulator
dopamine (Beggs and Plenz 2003; Gireesh and Plenz 2008;
Stewart and Plenz 2006). Most importantly, the sizes of neu-
ronal avalanches distribute typically according to a power law
with slope —1.5 and show long-range temporal correlations
(Beggs and Plenz 2003; Plenz and Thiagarajan 2007). The
recent discovery of a power law and long-range temporal
correlations in the motor cortex of awake and resting monkeys
indicates that neuronal avalanches are not restricted to in vitro
and anesthetized in vivo preparations (Petermann et al. 2009).
These findings bring the occurrence of avalanches in neural
tissue close to the theory of self-organized criticality (SOC),
which links power law statistics of events sizes with cascading
systems (Bak et al. 1988). Recently, in vitro experiments
showed that neuronal networks poised at the critical state
display a maximal dynamic range of responses, which disap-
pears when the balance of excitation and inhibition is altered
(Shew et al. 2009). This provided first experimental evidence
for a possible functional role of critical dynamics such as found
in SOC in living neuronal networks.

The LFP signals used in the previous avalanche studies lump
together activity of many neurons (mainly synaptic) within a
large field of integration. Therefore attempts have been made
to extend the investigation of neuronal avalanches to spiking

events, and previous studies indeed reported a power law AQ:a
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organization similar to that obtained from the earlier LFP
studies in vitro (Mazzoni et al. 2007; Pasquale et al. 2008).
However, another recent attempt to detect avalanches in the
spiking activity in cat parietal cortex in vivo during either
awake state or slow wave sleep failed when using small
electrode arrays (8 electrodes, aligned linearly) and a large
interelectrode distance (1 mm between neighboring electrodes;
Bédard et al. 2006). In this study, we made highly parallel
recordings of spontaneous spiking activity and LFPs in the
visual cortex (area 17) of four anesthetized cats by using 16 or
32 electrodes simultaneously (4 X 4 arrays) with small inter-
electrode distances (200 wm between neighboring electrodes).
This allowed us to test for evidence of neuronal avalanches in
LFP events and spikes simultaneously. Our results suggest that
spontaneous activity of the visual cortex under anesthesia has
statistical properties similar to the neuronal avalanches that
were initially described by Beggs and Plenz (2003) and thus
may impact the processing of sensory information in a way
similar to that of waves of synaptic activity.

METHODS
Preparation

Four cats were initially anesthetized with ketamine (Ketanest,
Parke-Davis, 10 mg/kg, im) and xylazine (Rompun, Bayer, 2 mg/kg),
and the anesthesia was maintained with a mixture of 70% N,0-30%
O, and halothane (1.0%). Tracheotomy was applied, and the animal
was fixated in a stereotactic frame. The animals were artificially
ventilated, and after craniotomy, the skull was connected to a metal
rod, and the halothane level was reduced to 0.5-0.6%. After ascer-
taining stability of anesthesia to prevent vegetative reactions to
somatic stimulation, pancuronium bromide (Pancuronium, Organon,
0.15 mg/kg/h) was applied to obtain paralysis. Glucose and electro-
lytes were provided by a gastric catheter, and the end tidal CO, and
rectal temperature were maintained between 3 and 4% and 37 and
38°C, respectively. The value of 0.5-0.6% halothane was held con-
stant throughout the experiment except for potentially painful proce-
dures (e.g., intramuscular injection of antibiotic). In this case, we
increased the level of halothane to 1.2% 10 min before the procedure
and returned immediately back to 0.5-0.6%, which was followed by
a period of =20 min without new recordings. The nictitating mem-
brane was prepared with neosynephrine, the pupils were dilated with
atropine, and the eyes were covered by contact lenses with artificial
pupils for protection from desiccation. All procedures abided to the
German law for the protection of animals and were supervised by a
veterinarian.

Recordings

We recorded spontaneous activity in area 17 with one or two
16-channel silicon-based microelectrode arrays (Neuronexus Tech-
nologies) (Fig. 1). Each array consisted of four 3 mm long shanks,
with a profile of 100 X 10 wm at its widest point. Each shank had four
electrode contacts. The separation between the neighboring contacts
was 200 wm in both directions, i.e., along and across the shanks. This
symmetric 4 X 4 arrangement allowed for the maximum distance
spanned by the centers of the contacts to equal 600 wm along each
dimension and 850 wm diagonally. Thus the recording area of one
array spanned ~0.6 X 0.6 mm?”. This array spacing is similar to that
used by Beggs and Plenz (2003). Each electrode contact covered an
area of 1,250 um? and had impedance of 0.3—0.5 MQ at 1,000 Hz.
The arrays were inserted into the cortex always in the same hemi-
sphere such that they penetrated the surface approximately perpen-
dicularly. We recorded mostly the activity from superficial layers;
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FIG. 1. Recording of extracellular unit activity and definition of spatiotem-
poral spike clusters in cat visual cortex. Top: spontaneous spiking activity for
72 neurons shown in the form of a raster plot for the duration of 500 ms (single
4 X 4 Michigan probe inserted in area 17). Bottom: 3 spatiotemporal spike
clusters at higher temporal resolution (zoom). In this example, continuous time
is discretized into time bins of width Az = 5 ms. A spike cluster is bracketed
by at least 1 bin with no activity (blank bin) and consists of a continuous
sequence of bins with at least 1 spike in each (active bins). In this example, all
3 spike clusters have the same lifetime of 10 ms.

however, we did not identify these layers. All neurons recorded by the
same array had overlapping receptive fields. In three cats (cats I, 3,
and 4), the analyzed spontaneous activity was taken from the 1 s
period before visual stimulation. For each trial, 1 s recordings of
spontaneous activity preceded 4—5 s of visual stimulus presentation
(sinusoidal gratings) and were followed by 1 s of recording. Intertrial
periods ranged between 1 and 2 s, depending on the experiment. In
one cat (cat 2), no visual stimulus was presented, and spontaneous
activity was analyzed for the whole trial duration (10 s). The total
duration of spontaneous activity obtained in each of the recordings
ranged between 100 and 720 s. For each cat, we investigated activity
in two different datasets (recordings). In three cats (cats 2, 3, and 4),
the two datasets were recorded by the same array but at different time
points, the interval between recordings varying between 3 min and 67
h. In one cat (cat 1), the two datasets were recorded simultaneously
using two different arrays. Overall, we inserted five different arrays
and recorded in total eight datasets, two from each cat. During the
recordings, the eyes of the cats were open, and in front of the eyes, a
blank (black) computer screen was located. The ambient illumination
was low as the lights in the room were strongly dimmed.

Extraction of extracellular spikes and nLFP events

Signals were amplified 1,000X and filtered between 500 Hz and 3.5
kHz for extracting multiunit activity (MUA) and between 1 and 100
Hz for extracting LFPs. MUA signals were sampled with a frequency
of 32 kHz, which allowed the later application of off-line spike-
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sorting techniques. LFP signals were sampled with 1 kHz. The signals
were transmitted to an A/D converter and recorded by a customized
LabView program running on a PC. Action potentials (spikes) were
detected with a two-sided threshold discriminator adjusted manually
to yield a signal-to-noise ratio of ~2:1. For each detected action
potential, the time of the event (timestamp) was recorded together
with the spike waveform over a duration of 1.2 ms.

After applying spike-sorting techniques based on principal compo-
nent analysis, we extracted between 43 and 97 units per array (67 =
17), the majority of which were identified as multi-units. We com-
bined both the multi- and single-unit activity in all analyses to reduce
the potential subsampling of spike clusters, which can obstruct the
presence of a power law (Priesemann et al. 2009). The firing rates
were computed for every unit and recording, and the values ranged
between 0.01 and 69.8 Hz, and, as expected, showed a skewed
distribution with an overall mean of 7 Hz and median of 2.2 Hz,
resulting in an SD of 11.2 Hz. The number of spikes per recording
varied between 55,037 and 251,810, with a longer recording duration
also leading to the detection of more spikes. In the recordings with
power law statistics, the average spike count per second was on
average considerably higher [590 *= 112 (SD) spikes/s] than in
recordings without a consistent power law (389 £ 179 spikes/s).
However, in cat 3, array I-a, in which we also found a power law, the
spike density was low (131 spikes/s), and in cat 4, array I-b, the spike
count was high (586 spikes/s). LFP events were extracted by applying
a threshold of 2 SD of the noise calculated for each electrode, whereas
the polarity of this threshold was determined from the polarity of the
spike-triggered LFP average. In two recordings, the electrodes
showed a spike-triggered LFP average with a negative deflection at
the time of spike occurrence and hence we used a threshold of —2 SD.
For the remaining six recordings, the unit-triggered LFP average at
single electrodes was positive, resulting in a threshold of +2 SD. To
determine the time of an event, we detected the point at which the LFP
signal reached its maximum between the two threshold crossings at
which the signal first exceeded and then returned back below the
threshold.

Extraction of event clusters

The spatiotemporal organization of spike and LFP events was
studied in the context of neuronal avalanches. We first identified
spatiotemporal event clusters in the spiking data based on the same
principles as those used for the investigation of avalanches in spon-
taneous LFP events in earlier studies (Beggs and Plenz 2003; Stewart
and Plenz 2006). Spikes were first grouped into small time bins of
width Az, which, across most of analyses and datasets, ranged between
0.5 and 32 ms. At Ar = 32 ms, most recordings either showed a flat
distribution of spiking event sizes (i.e., the probability of small and
large spiking events was equal) or the number of extracted events was
insufficient to compute a distribution. The bins containing at least one
spike we refer to as active and to those without spikes as blank. A
spatio-temporal cluster begins with a blank bin, is followed by a
sequence of active bins, and ends with another blank bin. In other
words, sequences of active bins were delineated by periods of no
activity, as shown in Fig. 1 (zoom-in). The first and last event clusters
of each segment (1 and 10 s in duration) were discarded from further
analysis, because they were likely to reflect an incomplete cluster. All
the analyses were restricted to neuronal spiking activity obtained from
single arrays, and recordings were included into analysis only if all 16
channels of the array detected neuronal spiking activity with signal-
to-noise ratio =2.

By applying this algorithm, we identified =132,400 (47,679 =
39,684) spike clusters per recording (with Ar = 1 ms). This number
depended strongly on the bin size (Af). If Az was small, the total number
of cluster increased by splitting larger cluster into several smaller ones.
Similarly, with large values of A¢, small clusters were combined into larger
ones, resulting in fewer clusters. Previous work by Beggs and Plenz (2003)

showed that a reasonable estimate of the optimal bin width can be obtained
from the gross average of interspike interval (ISI),.,, distribution, avgAt,
which estimates the average time between successive spikes occurring
anywhere in the array (see also Stewart and Plenz 2006 for a detailed
explanation of the methods). ISL,,,,,s were calculated always with a
resolution of 0.1 ms. The ISL,,,, distribution quickly decayed to
negligible values within ~50 ms (see Fig. 4B), and there was no
requirement to impose any additional cut-off as based on maximal
extend of correlations (cf. for the acute slice; Stewart and Plenz 2006).
Histograms of ISIs calculated for individual units (ISI,;) were
computed always with a resolution of 1 ms and plotted in log-log
coordinates. Both ISI,.,, and ISI,,; distributions were fitted with
both power law and exponential functions (ISL,,,, range: 2-30 ms;
ISI,,,;, range: 2-500 ms) for statistical purposes.

For each cluster, the cluster size was obtained by counting either
1) the number of spikes across all units and active electrodes or 2) the
number of electrodes at which at least one spike was detected. For
each array, histograms of cluster sizes were obtained using linear
binning, normalized to probability density distributions, and plotted in
log-log coordinates for further analysis. Fits of exponential and pow-
er-law functions were calculated starting from a minimal cluster size
of 3 spikes and ending with =40 spikes for Ar values between 1 and
8 ms in four recordings and between 6 and 16 ms in one recording,
representing the Af range in which we detected a power law. The
resulting R* values were averaged across all Afs. In the case that the
estimated density plot was not continuous because of an insufficient
number of data entries, the maximal cluster size was <40, in which
case we truncated the rightmost end of the corresponding plot. This
fitting range was optimal for the analysis of power law statistics,
because cluster sizes with =2 spikes were not always distributed on a
straight line (e.g., with Ar =2 or =3 ms), whereas the distributions of
cluster sizes >40 spikes were either curved too (e.g., when A7 =2 ms)
or sometimes undersampled (when Az reached values of ~8 ms),
reducing the R* values of the linear and exponential fits. Preliminary
analysis showed no difference in the appearance of a power law and
its concomitant exponent across the two definitions of cluster sizes,
and thus to characterize the cluster size distributions, we restricted our
analysis to the number of spikes, i.e., to definition /. At least two
spikes needed to occur within a sequence of active bins to be counted
as a cluster, which excludes from the analysis single, isolated spikes.
Spike clusters were considered to be neuronal avalanches if their
corresponding size distribution obeyed a power law (i.e., the distri-
bution in a log-log plot followed a straight line and power law fitted
better than exponential function). The lifetime of a spike cluster was
defined as the length of the uninterrupted sequence of active bins, i.e.,
the count of bins within the cluster multiplied by Ar. Lifetime distri-
butions were plotted in log-log coordinates, and both power law and
exponential fits were computed for lifetimes between 1 and 40 active
bins and for bin sizes between 1 and 8 ms (6 and 16 ms for 1 dataset;
always in 1 ms steps).

As described for spike clusters, spatiotemporal LFP clusters were
also obtained by concatenating active time bins bracketed by at least
one empty time bin on each side. For LFP clusters, At ranged from 1
to 32 ms, and the LFP cluster size was defined as the number of
electrodes for which an LFP event was detected. The histograms of
LFP cluster sizes were obtained with logarithmic binning, normaliza-
tion, and studied in log-log coordinates using linear regression anal-
ysis.

array’

Correlation analysis

Normalized auto-correlation histograms (ACHs) and cross-correla-
tion histograms (CCHs) of spontaneous spiking activity were com-
puted first for each unit and each pair of units, respectively. We
averaged the histograms across all units (ACH) and all possible pairs
of units (CCH). Consequently, we obtained only one ACH and one
CCH per dataset. Normalization was achieved by replacing coinci-

J Neurophysiol « VOL 104 « SEPTEMBER 2010 + WWW.jn.0rg



HOr-oc

| tapraid4/z9k-neurop/z9k-neurop/z9k00910/29k032810z | xppws | S=1 | 7/24/10 | 10:28 | MS: J00953-9 | Ini: diw | |

4 HAHN ET AL.

dence counts with Pearson’s r computed on the trains of 1s (spike) and
0 s (nonspike) binned to 1 ms precision. The width of an ACH or CCH
was estimated at half-height, i.e., at the midpoint between its baseline
and the maximum. In all cases, the investigated auto-correlation
window was £50 ms and cross-correlation window was *+100 ms.

Subsampling analysis

To test whether subsampling of spiking events can account for the
absence of a power law in some of our recordings, we randomly
removed spikes from the recordings with power law and recomputed
distributions of cluster sizes (also known as spike-train thinning).
Spiking events (i.e., actions potentials) were removed randomly and
independently from each unit such that, as a result, only 50, 25, or
10% of the original data were sampled. This subsampling procedure
was repeated 10 times for each size of the subsample. Power law and
exponential functions were fitted for cluster size distributions (see
above) and for Ars (2—-8 ms for 4 datasets and 616 ms for 1 dataset),
where we had previously found a power law. We subsequently
averaged across all 10 subsampling repetitions, all investigated Ats,
and all tested recordings. To avoid any bias toward a better power law
fit because of a distribution that was bimodal, we truncated the tales
of all bimodal distributions such that only the single-curved part of
these distributions were fitted. Consequently, we obtained two values
per subsampling size, one for the average power law fit and one for the
average exponential fit, which we compared across different levels of
subsampling.

RESULTS

An example of the spontaneous activity recorded from 72
units in parallel is shown in Fig. 1. In the same figure we also
show the procedure for extracting the spatiotemporal spike
clusters, i.e., candidate avalanches, defined as sequences of
active bins delineated by blank bins (see the zoom-in). The
same procedure was used to extract LFP event clusters.

LFP cluster size distributions

The cluster sizes of LFP events from spontaneous activity in
slice cultures, acute slices, and in vivo from young, anesthe-
tized rats and awake monkeys have been found to distribute

10° 5 <
A 10y,

cat 1, array |

according to a power law (Beggs and Plenz 2003; Gireesh and
Plenz 2008; Petermann et al. 2009; Stewart and Plenz 2006). In
this study, a similar power law distribution was found for LFP
cluster sizes recorded during spontaneous activity in primary
visual cortex of the anesthetized cat. The density of LFP cluster
sizes, P(n), when plotted in log-log coordinates, followed a
straight line up to the cluster size of n = 16 (Fig. 2A4), which
was the largest size that is expected with a 4 X 4 array
provided that, within a cluster, LFP events do not recur i.e., do
not return back to the electrode at which they once already
occurred. This distribution is characteristic of the power law
function, P(n)~n®, with a cut-off at the maximal cluster size,
and for which the exponent « indicates the slope in the log-log
plot. As shown originally for LFP events in vitro (Beggs and
Plenz 2003), the power law in vivo, as well as the cut-off
values for LFP cluster sizes, remained also robust across
different bin sizes, Az (in 7 of 8 recordings).

The exponent of the power law allows for a distinction
between different types of dynamical systems that may give
rise to avalanche-like behavior (i.e., each dynamical system
displays a unique exponent) and thus restricts potential mech-
anisms that may be responsible for the generation of the power
law (see Plenz and Thiagarajan 2007). Previous estimates of
the exponent « for neuronal avalanches both in vitro and in
vivo showed a monotonical increase of « from about —2.2 to
—1.2 with an increase in Ar (Beggs and Plenz 2003; Gireesh
and Plenz 2008; Petermann et al. 2009; Plenz and Thiagarajan
2007;Stewart and Plenz 2006), and when Ar was chosen as the
average time delay between successive events on the array, «
was found to be close to —1.5. Similarly, in this study, the
slope monotonically increased with Af from —2 to about —1.2
(Fig. 2B; n = 7 recordings). However, the slope remained
largely above —1.5 for Az >2 ms. Therefore the slopes found in
this study in vivo were more shallow from those found previ-
ously in vitro (Beggs and Plenz 2003), even though the same
interelectrode distance of 200 wm was used in both cases.

Computer simulations of cascading neuronal activity sug-
gested that the distributions of lifetime for clusters of short
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duration (i.e., less than ~10A7) should follow a power law too
(Eurich et al. 2002), with an exponent close to —2.0 (Teramae
and Fukai 2007; Zapperi et al. 1995). Previous in vitro studies
on LFPs reported results consistent with these predictions,
showing a power law for the initial part of the lifetime
distributions (Beggs and Plenz 2003). We obtained different
results for the lifetime distributions of LFP clusters in vivo. For
all recordings and with Az = 1 ms, the entire lifetime distri-
bution displayed curvatures, but on the other hand, deviated
also from a simple exponential distribution, showing a sub-
stantial increase in long lifetimes relative to what would have
been expected if LFP events clustered by chance (Fig. 2C).
This finding is consistent with earlier reports of lifetime dis-
tributions in vitro (Beggs and Plenz 2003), which also differed
from an exponential decay. Moreover, in this study, lifetime
distributions of LFP events did not scale, i.e., did not collapse,
with an increase in Ar (Fig. 2D), a result that would be
expected from theory (Eurich et al. 2002) and that has been
already shown experimentally in vitro (Beggs and Plenz 2003).

Spike cluster size distributions

Next, we examined whether spike clusters in vivo exhibited
a power law. We varied Az from 0.5 to 32 ms and found
characteristic spike cluster distributions, which depended on
At. An example distribution computed for different bin sizes is
depicted in Fig. 3A (cat I). For small bin sizes (Az < 1 ms), the
cluster sizes were distributed across a steep, curved line, which
had a tendency to become shallower and straighter as the bin
size increased. Starting with Az = 1 ms (in some cases 2 ms;
Fig. 3A) the distributions showed a power law that stayed =7
or 8 ms. At At = 9 ms, the distribution became bimodal with
curvatures at the initial part and a horizontal tale, i.e., medium-
size and large clusters being about equally probable. In the
range 1-7 or 8 ms, with the gradual increase in At, the slope of
the fitted line (i.e., the exponent of the power law) also
gradually increased. This can be explained by the increased
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likelihood to concatenate spike events (see METHODS). In one
dataset, the power law was detected only between Ar = 6 ms
and At = 16 ms.

Overall, we found power law distributions of avalanche
sizes in five of eight datasets independently of whether the
recorded segments were short (cats I and 3) or long (cat 2),
and the results were similar to a previous report in dissociated
cultures (Pasquale et al. 2008), whereby the detection of a
power law in spiking activity also depended on Az. For each of
these five experiments (recordings), we fitted the resulting size
distributions for different Azs (6—16 ms in 1 recording and 1-8
ms in all other recordings) with an exponential and with a
power law function, averaged across all tested Azs and com-
pared the goodness of the two fits (i.e., averaged R* values). A
good fit to power law suggests correlated spikes (Bak et al.
1988). A good fit to an exponential function may suggest either
independence between neurons analogous to a Poisson process
(Shadlen and Newsome 1998) or subsampling of event clus-
ters, whose true size distribution exhibits a power law but is
inaccessible because of a small count of recorded action
potentials (Petermann et al. 2009; Priesemann et al. 2009). In
these recordings, a power law function fitted the data signifi-
cantly better than an exponential function (#-test, all # > 2.65;
all P < 0.001; df = 13; Fig. 3B), for which the distributions of

Spike cluster size [# of spikes]

FIG. 3. Spike cluster sizes in vivo show power law statistic similar to that
of neuronal avalanches. A: probability to observe a spike cluster of a given size
s is plotted in log-log coordinates for 4 different bin sizes Az. Spike cluster size
is calculated as the number of spikes for the duration of the cluster and is
shown for values between 2 and 100. B: comparison of quality with which
power law and exponential functions fitted cluster size distributions in different
recordings. The order of the recordings on the abscissa was organized accord-
ing to the quality of the exponential fit. Error bars: SD. C: same as in A but
calculated for 5 different recordings and only 1 Atz. Four of the recordings are
plotted with Ar = 3 ms and 1 with At = 9 ms.

spike cluster sizes are plotted in Fig. 3C using Ar = 3 ms for
four recordings and Ar = 9 ms for one of them. One pair of
recordings (cat 1) was obtained simultaneously from the same
cat from arrays positioned in the same brain area a few
millimeters apart. This suggested that the power law was
present simultaneously in two spatially separated arrays. Two
other recordings using the same array (i.e., the same position in
the cortex) were obtained from another cat (car 2) at two
different instances in time (separated by ~15 min), which
suggested temporal stability for at least a short period of time.
The overall linear fit to distributions of event sizes in log-log
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plots was Rpower = 0.93 £ 0.01 (SD), which exceeded consid-
erably the quality of the exponential fit (Re,(pon = 0.85 £ 0.03; see
also Fig. 3B). Therefore similarly to the results obtained with
LFPs, the spiking events, which sample much smaller portion of
neuronal activity, can show power law distributions of spatially
distributed events. The cautionary note is, however, that this result
is not obtained in every recording.

Exponent of the power law

A representative result for the estimated exponents of the
spike cluster distributions is shown in Fig. 4A, where we

A -1 —=— cat1, array |
—— cat1,array Il
—a— cat2,arrayl-a
cat2, array | - b
a
-2 T T T T T 1 T 11
2 10
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B 1 30 150
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)
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102 o
05 @
10-3 " I 0
1 50
Slarray [mS]
C 10°
N
\\
\\ \\ o =-18
2
Ng \\\ -
o ——cat 1, array |, Z: 1;3 w’

—cat 1, array |l "- u
cat2,array | -a, «=-1.82

——cat2,array | -b, «=-1.83
cat3,arrayl-a, «=-1.81

10—4 T T T T T 11111 T T T i
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Spike cluster size [# of spikes]

FIG. 4. The slope of the power law. A: change in the slope, «, shown as a
function of bin size, Ar, for the 4 arrays with power law statistics in the
depicted range of Ar. B: interspike interval (ISI),.,, distribution for the
recordings shown in Fig. 3A plotted in log-log coordinates (black, left ordinate)
and the running average of this distribution, avgAr, computed as a function of
the ISIs (red, right ordinate). The dashed line represents the value of avgAr (2.3
ms in this case), which was used in the analysis in C. C: distributions of spike
cluster sizes calculated at corresponding avgAr for 5 different arrays. The
slopes « for each recording are indicated in the plot.

plotted the changes in the estimated exponent as a function of
the bin size, At, for four recordings in which we found a power
law distribution for At = 1-8 ms (the 5th recording with a
power law at Ar = 6—16 ms is not shown). In accordance with
the findings based on LFPs, the slope grew with the increase in
At. This result is expected because the concatenation of spikes
at large values of Ar necessarily increases the likelihood of
large spike clusters. We also estimated the value of Ar that
minimizes the decomposition and concatenation of clusters. To
this end, we used the methods of Beggs and Plenz (2003) and
computed simply the gross average of ISL,,,, s (see METHODS;
Fig. 4B). For the recordings that exhibited a power law, the
resulting value, avgAt, varied across different arrays but stayed
within the range of Ar (close to the lower limit) where we
found a power law, with the averages ranging between 1.5 and
5.9 ms (2.84 *= 1.8). Importantly, when we computed the
exponents of event size distributions only for these optimal
values of Ar, the values of exponents were remarkably similar
across all five recordings for which we have previously estab-
lished reliable power laws. These values were —1.77, —1.78,
—1.81, —1.82, and —1.83, with an average of —1.8 = 0.03
(Rpower = 0.98 = 0.01, Rf)x on = 0.90 = 0.01, for the 5 fitted
lines). Consequently, when these distributions of event sizes
were plotted on the same graph, they largely overlapped (Fig.
4C). These values of the exponents were lower than those
found either in this (Fig. 2B) or in previous studies for LFPs
(Beggs and Plenz 2003; Gireesh and Plenz 2008) or those
found in previous studies for spike clusters (Mazzoni et al.
2007; Pasquale et al. 2008).

Absence of power law statistics in event size distributions

As mentioned, in three recordings (of 8), we did not find
sufficient evidence that the sizes of spike events distributed
according to a power law (Fig. 3B). One recording without a
power law (cat 3) was made almost 3 days (67 h) after another
one that has shown power law. The remaining two datasets
were obtained from the same cat (cat 4) about 1 day apart (28
h). This was despite the presence of a power law in the LFP
events in all cases (Fig. 2B). This suggests that the power law
statistics might be more robustly found at the level of the LFP
compared with unit activity, which is more prone to subsam-
pling. Similarly to the datasets with a power law, for small Ats,
the distribution of event sizes was steep and curved (although
sometimes only to a small degree). Likewise, an increase in At
made the distributions of both classes of recordings shallower.
The main difference between the two groups was detected with
the increase in Ar. Only those five recordings classified as
containing power law exhibited consistently a straight line in a
log-log plot, whereas the distributions of the remaining three
became gradually more and more curved as At increased.

These three recordings were fitted with an exponential and a
power law function for bin sizes 1-8 ms. Overall, the quality
of fit for exponential functions did not differ from that of power
law, when different values of Ar were taken into account (7-test,
all t < 1.71, all P > 0.06, df = 13). As expected, for small bin
sizes, the power law fitted the distributions of cluster sizes in two
recordings better than did the exponential function (R>,,., = 0.97;

Rixpon = (.88 with At = 1 ms), whereas the result 532\1”56 rreversed
for higher bin sizes (RpoWcr = 0.95; Rgxpon = 0.98 with Ar = 8

ms). As a result, averages of the goodness of power law and
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exponential fits computed across all Ass were approximately
equal for these two recordings. In the third recording, an
exponential function described the distribution of event sizes
better than a power law across all bin sizes (cat 4 I-b; on
average, R2,,c = 0.92 = 0.04 vs. RZ,,,, = 0.95 = 0.07).
Note that the qualities of the exponential and power law fits
(i.e., averaged R? values) are higher in these three record-
ings than in those with consistent power law. This is because
the average duration of the recording was much longer in the
former case, increasing the total spike count and, by that, the

quality of the fit.

Distributions of ISIs

We also studied the presence of a power law in the distributions
of ISIs. These distributions were computed either for each unit
separately (ISI,,;,) or for all the units belonging to an entire array
(ISL,yay)- The ISL,;, distributions did not exhibit a straight line in
a log-log plot in either of our recordings (Fig. 5B). However, for
the datasets that exhibited a power law in the distribution of
cluster sizes, a power law function fitted also the distribution of

IST,,,,; better than did the exponential function (Rgower =093 =
0.01; Rgxpon = 0.85 = 0.03). The opposite was the case for the
datasets without a power law in cluster sizes (R;ower =091 =
0.01; Rixpon = 0.94 = 0.01). Therefore, although the distributions

of ISI,,,; were always curved, the curvature was the smallest in the
recordings in which the distributions of cluster sizes obeyed a
power law.

In contrast, ISL,,,, distributions were much more consistent
with the analysis of event size distributions. In the recordings
in which spike cluster sizes distributed according to a power

law, the ISL,,,,, distributions exhibited a straight line (Fig. 5C;
Rf)Ower = 0.96 = 0.01; Rﬁxpon = 0.88 % 0.03) and vice versa;

if a power law was absent in the distribution of cluster sizes, a

straight line was also missing in the ISI,,,, distribution (Fig.

5D; R er = 0.92 = 0.01; RZ,,0, = 0.97 * 0.02). Thus the
analysis of ISL,,,,, distributions suggests conclusions similar to

those reached after the analysis of the distributions of events
sizes.

Lifetime distributions

The distributions of spike cluster lifetimes showed proper-
ties similar to those of the cluster size distributions. The result
was dependent on the bin size and whether a power law was
detected in the size distribution. In all recordings, the distribu-
tion of lifetimes was steep and curved at small bin sizes (=1
ms; see Fig. 6A for At = 1 ms) and became gradually shallower
with the increase in Az (Fig. 6B). In those five recordings with
a power law distribution of cluster sizes, the lifetime distribu-
tions became straighter with increasing bin sizes, but never-
theless, they never exhibited fully a power law (Fig. 6B). The
distributions were closest to a power law with bin sizes 6—7 ms
(16 ms for 1 recording)—values similar to the maximum At for
which a power law of cluster sizes could still be detected. For
Ats = 7 ms, the lifetime distributions became bimodal. In the
three recordings with absence of a power law distribution in
cluster sizes, the increase in Az had the opposite effect on the
lifetime distribution. Much like the cluster sizes, these distri-
butions increased also in curvature with larger Ars (data not
shown). We also quantified these results: For all recordings in
which cluster sizes exhibited a power law, the lifetime distri-
butions for Arzs = 1-8 ms (6—16 ms in 1 case) were approx-
imated more accurately by a power law function (R* = 0.95 *
0.01) than by an exponential function (R* = 0.89 *+ 0.2).
Conversely, in the absence of a power law in cluster sizes
(recordings marked with stars in Fig. 6A), the lifetime distri-
butions were described better by an exponential function than
by a power law (R7,.., = 0.92 = 0.02; RZ, ., = 0.97).

Furthermore, recordings with a power law also showed
longer lifetimes, as can be seen in Fig. 6A. Lifetime distribu-
tions with a power law in cluster sizes were less steep and
intercepted the abscissa at a later point (23 = 4 ms) compared
with the lifetime distributions of recordings lacking power law
statistics (13 = 3 ms; marked with stars). The only exception
was array I-a of cat 3, which showed a power law in the size
distribution (only for A = 6 ms) but intercepted the abscissa
at a value similar to recordings without a power law (13 ms).
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FIG. 6. Lifetime distributions of spike clusters. A: distribution of cluster
lifetimes computed for all recordings. Star: the 3 recordings whose size
distributions did not follow a power law in the size distribution. B: example
lifetime distributions for 1 recording in area 17 calculated for different values
of Ar.

Correlation analysis

In critical systems, events that occur within cascades can be
correlated over long distances and often display long-range
temporal correlations (Bak et al. 1988). The same was shown
in in vitro experiments in which the existence of a power law
in neural activity was associated with long-range correlations
across neuronal events (Beggs and Plenz 2003, 2004; Mazzoni
et al. 2007). To assess the role of correlations in our in vivo
experiments, we computed overall ACHs and CCHs by aver-
aging the individual ACHs and CCHs calculated for all possi-
ble units and pairs of units belonging to one array (see METHODS
for more details).

In all cases, ACHs and CCHs showed center peaks that
indicated correlations (auto- or cross-) higher than expected by
chance. The value of the ACH at 0 time delay is by definition
always 1.0 and hence was not used for the analysis. Notably,
these correlations differed across arrays with and without
power law statistics. Correlations were on average stronger
(e.g., the center peaks were higher) in arrays with a power law
in cluster sizes (r = 0.019 = 0.008 and 0.007 = 0.001 for
ACHs and CCHs, respectively) as opposed to cases where a
power law was absent [r = 0.007 = 0.002 and 0.005 *= 0.001
for ACHs and CCHs, respectively; for ACH, #6) = 2.34, P =
0.027; for CCHs, #(6) = 1.85, P = 0.057]. Example ACHs and
CCHs for a power law and a non—power law case are shown in
Fig. 7.

HAHN ET AL.

Moreover, we found a close relationship between the width
of the center peak and the presence of a power law. The
recordings in which the spike counts showed power law sta-
tistics had significantly wider center peaks, both in ACHs and
CCHs, than the recordings in which the power law was absent.
The width at the half height of the peak was 14 = 3 ms for
ACHSs and 18.6 = 7.4 ms for CCHs in arrays with power law
and 8 = 2 ms for ACHs and 3.7 = 0.6 ms for CCHs in arrays
without power law [for ACH, #(6) = 2.63, P = 0.02; for CCHs,
#(4.1) = 4.51, P < 0.01]. Therefore consistent with the longer
lifetimes in the recordings with power law in event sizes, the
presence of a power law was associated not only with stronger
correlations but also with correlations that spanned consider-
ably longer temporal distances.

Subsampling can destroy power law statistics

As shown in previous studies (Petermann et al. 2009; Priese-
mann et al. 2009), subsampling, i.e., recording an insufficient
number of neuronal events, can mask power law statistics of
underlying neuronal dynamics. To test whether subsampling
could explain the absence of a power law in our data, we
randomly removed spikes from the recordings, the effect of

which on the distribution of cluster sizes is shown in Fig. 84 8

for Az = 3 ms. The straight line of the fully sampled recording
gradually turned into a larger and larger curvature as further
spikes were removed from the dataset. To quantify these
results, we fitted power law and exponential functions for each
subsampling class and for each Af¢, where a power law was
detected in the original data (in 4 datasets Az = 2—-8 ms, in 1
dataset Ar = 616 ms). The resulting fits were averaged across
all Ars and all recordings with previously established power
law distributions for a given level of subsampling, such that we
obtained one power law fit and one exponential fit per subsam-
pling size. Subsequently, the two types of fits were compared,
and the results are shown in Fig. 8B. The analysis showed that
fully sampled data are fitted better with a power law than with
an exponential function [#(84) = 8, P < 0.001]. This difference

Power law No Power law
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FIG. 7. Examples of cross-correlation (CCH) and auto-correlation histo-
grams (ACH) averaged across all spikes trains or pairs of spike trains recorded
from an array and obtained in recordings that either did or did not exhibit a
power law in the event size distributions.
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FIG. 8. Subsampling analysis. A: distributions of spikes clusters for a fully
sampled dataset and 3 different degrees of subsampling. B: comparison of
power law and exponential fit for 4 different sample sizes averaged across all
datasets with previously established power law. Each pair of fits was obtained
by subsampling the original recordings at the indicated level 10X and at
different Ars (4 datasets: 2-8 ms, 1 dataset: 6-16 ms) and averaging the
obtained values across all Ars and all recordings in which a power law was
detected before. Error bars: SD.

reduces gradually as data are subsampled to a higher degree,
the difference being only marginally significant with the sam-
pling of 10% of the original data [#(643) = 1.74, P = 0.08].
These results show that the power law in cluster size distribu-
tions breaks down with subsampling, i.e., with random removal
of spikes from the original dataset. However, we also found
that the presence of a power law was not tightly linked to the
average spike density (i.e., spike count per second in a given
recording). Although, on average, the spike count per second
was higher in the recordings with power law than in those with
curved distributions of event sizes, the lowest spike density of
all was found in a recording that also showed power law
statistics. Thus power law can also be found with a low level
of ongoing activity.

DISCUSSION

Identifying a critical state of a system, as it has been defined
by Bak and others (Bak and Paczuski 1995; Bak et al. 1988;
Jensen 1998), is a nontrivial task. Finding a power law in a
distribution of events is apparently not sufficient proof of
criticality, and other measures are necessary. Much importance
has been assigned to long-range correlations between events
and to scale invariance, i.e., persistence of the power law
across different spatial and temporal scales. First, evidence
suggesting the existence of critical dynamics in neural tissues,
characterized as neuronal avalanches, was reported from the

statistics of the spontaneous LFP activity in cultured neuronal
networks and in acute cortical slices (Beggs and Plenz 2003,
2004). In particular, a power law distribution of the event sizes
was found, irrespective of whether these sizes were defined as
the number of LFP events or the sum of the amplitudes of these
events. In addition, the distributions of the events’ lifetimes
partially obeyed a power law. These power law functions exhib-
ited reliably exponents of —1.5 for event sizes and —2.0 for
lifetime distributions, the empirically obtained values matching
closely the theoretical predictions (Eurich et al. 2002; Zapperi et
al. 1995). Also, the authors described long-range temporal corre-
lations and robustness of power law statistics, when both spatial
and temporal scaling operations were applied. The same results
were recently obtained from ongoing activity in awake monkeys,
suggesting the presence of critical dynamics in the nonanesthe-
tized brain (Petermann et al. 2009). A power law organization of
nLFP clusters was accompanied by correlations spanning several
seconds in time. This organization also withstood scaling opera-
tions in nLFP amplitude threshold, which systematically removed
=95% of nLFPs.

Our study attempted to expand these findings in two direc-
tions. First, we studied the properties of the spontaneous
activity in the visual cortex in vivo, and second, we analyzed
much more sparse signals based on neuronal spiking activity
rather than relying on the LFP. Our results provided support for
the conclusions offered by Beggs and Plenz (2003, 2004) and
Petermann et al. (2009), but also provided additional informa-
tion because of several differences between the in vitro and our
in vivo results and also between LFP-based and spike-based
analyses. We found that the spontaneous spiking activity in cat
visual cortex can, under anesthesia, exhibit different types of
distributions of spiking events. The distributions in some cases
follow a power law, but in other cases, lack such statistics.
Importantly, when the power law property was detected, it was
found only across a certain range of values for the scaling
parameter Az, which is in contrast to our LFP analysis, where
the power law was invariant to the chosen At, a scale-invari-
ance characteristic for neuronal avalanches (Beggs and Plenz
2003). This result is similar to a previous study in vitro, in
which power law statistics also depended on At (Pasquale et al.
2008). When in our data the value of Ar was chosen such that
it was most optimal for minimizing concatenation and decom-
position of events, the exponent of the power law distribution
was highly consistent across different experiments. In these
recordings, in which power law statistics was found for event
sizes, lifetime distributions were the closest to, although did not
fully exhibit, the power law statistics. A similar case was with the
ISI distributions computed for an entire array (ISL,,,,), which also
exhibited a power law in cases in which the event sizes did the
same. Therefore we found evidence supporting the idea that the
spontaneous activity in anesthetized brains is driven by processes
that manifest power law statistics consistently across different
measures and that are possibly based on cascades of neuronal
events or so-called neuronal avalanches.

The exponent of avalanche size distribution was, however,
somewhat smaller than that reported in previous studies and
expected theoretically. We find consistently the value around
—1.8 (as opposed to —1.5 reported previously). On the other
hand, we found an exponent larger than — 1.5 for LFP clusters
for most of the investigated values of Ar (Fig. 2B). It is
presently not clear how these differences in slope are related to
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the type of used signals (spikes vs. LFP), why these results
differed from the studies in vitro, and whether anesthesia
played a role.

In three of eight recordings we did not observe a power law,
but instead, a distribution of event sizes that exhibited an
exponential-like distribution. The reasons for this variability in
the results also need to be identified. One possible explanation
of this finding is subsampling: The invariant presence of power
law in LFPs suggests that avalanche-like behavior may exist
also in all recordings of spiking activity but, because of the
relatively small number of spikes recorded simultaneously, this
property may not be detected easily or always (Priesemann et
al. 2009). Our subsampling analysis points in a similar direc-
tion. Subsampling because of a too small number of electrodes
(8) may be the reason that another recent study that recorded
spiking activity in vivo did not find a power law distribution of
event sizes (Bédard et al. 2006). However, there are also other
possible explanations; as in this study, the electrode tips
spanned much larger distances (1 mm), and the electrodes were
aligned linearly.

At present, we cannot distinguish the subsampling explana-
tion of the lack of power law from changes in cortical states.
Spontaneous changes in the depth of anesthesia (Herculano-
Houzel et al. 1999), possibly the result of a change in the
concentration of acetylcholine (Rodriguez et al. 2004), may be
a possible factor that underlies these changes in the properties
of neuronal activity. Our findings that the shapes of auto- and
cross-correlograms differed in recordings with and without
power laws possibly suggest a role of state changes. This,
however, does not explain why changes in power law would be
observed only in spiking and not in LFP activity. A complete
explanation will require accounting for this feature of our
results. A similar problem is with a third class of explanation
that may hypothesize changes in the statistical properties
across different cortical layers. Again, if responsible for the
lack of power law, one would expect this factor to affect LFP
and spiking activity equally. This conclusion is supported by
the finding that one of our arrays showed the differences in the
presence of power law and correlations at two different time
points, without moving the array to another position.

In this study, we investigated one more prediction. It is
expected that cross-correlation analysis of avalanche activity
shows correlations between events on a broad temporal scale
(Beggs and Plenz 2003). Thus if avalanches are found in
neuronal spiking activity, cross-correlation should not show a
narrow center peak characteristic for neuronal synchrony as-
sociated with beta/gamma oscillations. Instead, one should
observe a broad peak that reflects correlations that occur
simultaneously at different time scales. This is what we found.
Auto-correlation showed a similar internal structure of spike
trains.

The functional implications of a putative critical state in the
sensory areas remain elusive. Theoretical work (Kinouchi and
Copelli 2006) reported that neuronal networks set at criticality
display optimal sensitivity to stimuli, a finding that was exper-
imentally confirmed using organotypic cultures (Shew et al.
2009). The preparation showed a maximum range of responses
to stimulation by electric currents when nLFP clusters were
distributed according to a power law. Possibly, the presence of
power law in the visual cortex has a similar impact on pro-
cessing visual stimuli.

Mechanisms other than self-organized criticality can gener-
ate a power law distribution of event sizes (Newman 2005;
Plenz and Thiagarajan 2007). Touboul and Destexhe (2010)
attributed the occurrence of a power law in nLFP clusters to
stochastic dynamics, although with orders of magnitude
steeper slopes. Our data leave open the possibility that the
mechanisms that generate power laws in spiking and LFP
activity are different, because we find different properties in
the two types of responses. Further studies will be needed to
identify the mechanisms responsible for power law distribu-
tions, or lack thereof, in different measures of neuronal activ-
ity.

In conclusion, this study provides evidence, for the first
time, that not only LFP and spiking activity in vitro can exhibit
power law statistics of event sizes, but the same can be the case
for neuronal spiking activity recorded in vivo. These results
suggest the possibility that neuronal avalanches are a common
component of spontaneous brain dynamics and thus may also
have implications in understanding how sensory inputs are
represented and processed.
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