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Synchrony Makes Neurons Fire in Sequence, and Stimulus
Properties Determine Who Is Ahead
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The synchronized activity of cortical neurons often features spike delays of several milliseconds. Usually, these delays are considered too
small to play a role in cortical computations. Here, we use simultaneous recordings of spiking activity from up to 12 neurons to show that,
in the cat visual cortex, the pairwise delays between neurons form a preferred order of spiking, called firing sequence. This sequence spans
up to �15 ms and is referenced not to external events but to the internal cortical activity (e.g., beta/gamma oscillations). Most impor-
tantly, the preferred sequence of firing changed consistently as a function of stimulus properties. During beta/gamma oscillations, the
reliability of firing sequences increased and approached that of firing rates. This suggests that, in the visual system, short-lived spatio-
temporal patterns of spiking defined by consistent delays in synchronized activity occur with sufficient reliability to complement firing
rates as a neuronal code.

Introduction
Does fine spike timing determine what we see? Cortical neurons
contain an arsenal of cellular mechanisms sensitive to the precise
timing of inputs (Bi and Poo, 1998; Usrey et al., 2000; Ahissar and
Arieli, 2001; Azouz and Gray, 2003; Meliza and Dan, 2006; Fries
et al., 2007; Hausselt et al., 2007; Cardin et al., 2009; Branco et al.,
2010). However, it is unclear whether such mechanisms are ac-
tually exploited (i.e., whether the fine temporal structure of cor-
tical activity reflects features of the environment). That is, if
neurons listen to the timing of inputs, do they hear anything
worth listening to?

At early stages of sensory processing, information about stim-
ulus properties is available in the precise temporal relationships
between action potentials: More optimally stimulated neurons
respond earlier to a stimulus than less optimally stimulated ones
(Heil, 2004; Johansson and Birznieks, 2004; VanRullen et al.,
2005; Gollisch and Meister, 2008). In the hippocampus, the rel-
ative timing of action potentials also contains information, for
example, about the animal’s spatial position (O’Keefe and Recce,
1993; Skaggs et al., 1996; Harris et al., 2002). An important dif-

ference to the sensory systems is that, in the hippocampus, action
potentials do not lock to the timing of external inputs (onset and
offset) but are instead referenced internally to the oscillatory
rhythm of the population at theta frequencies (�5– 8 Hz)
(O’Keefe and Recce, 1993; Dragoi and Buzsáki, 2006; Geisler et
al., 2007). Thus, the information encoded by the precise timing of
a hippocampal neuron is detectable only in relation to the activity
of other neurons.

In the visual cortex, oscillations related to stimulus processing
occur predominantly in the beta/low-gamma range (20 – 60 Hz).
These fast oscillations synchronize neurons (Gray et al., 1989;
Engel et al., 1991; König et al., 1995a; Maldonado et al., 2000),
and the synchronization exhibits small delays of up to several
milliseconds (Buzsáki and Chrobak, 1995; König et al., 1995b;
Roelfsema et al., 1997; Schneider and Nikolić, 2006). These delays
were thought to reflect imprecise locking of spiking activity to the
oscillation cycle (Buzsáki and Chrobak, 1995; Roelfsema et al.,
1997). In contrast, we explore the possibility that these spike
delays reflect stimulus information, similar to the phase coding of
spatial information in the hippocampus (Schneider et al., 2006;
Fries et al., 2007).

We made simultaneous recordings in the primary visual cor-
tex of anesthetized cats with up to 32 electrodes and extracted the
preferred temporal sequence of spiking from pairwise cross-
correlations of neurons (Schneider and Nikolić, 2006; Schneider
et al., 2006; Nikolić, 2007; Havenith et al., 2009). We find that (1)
groups of synchronized neurons form firing sequences, each neu-
ron having its own preferred firing time relative to all other neu-
rons in the group. (2) These sequences last shorter than a single
cycle of beta/gamma oscillation. (3) Firing sequences are not
fixed (“hardwired”) but change as a function of stimulus proper-
ties. (4) The changes are systematic and permit inferences on
stimulus properties. (5) The degree to which firing sequences

Received June 3, 2010; revised March 6, 2011; accepted March 14, 2011.
Author contributions: M.N.H. and D.N. designed research; M.N.H., J.B., and D.N. performed research; N.-H.C.

contributed unpublished reagents/analytic tools; M.N.H., S.Y., and D.N. analyzed data; M.N.H., W.S., and D.N. wrote
the paper.

This work was supported by Deutsche Forschungsgemeinschaft Grant NI 708/2-1, The Alexander von Humboldt
Foundation, The Hertie Foundation, and by Research Grant 01GQ0840 of the German Federal Ministry of Education
and Research (Bundesministerium für Bildung und Forschung) within the “Bernstein Focus: Neurotechnology.”
M.N.H. was supported by The Ernst Schering Foundation, the Royal Society, and the German National Academic
Foundation. We thank Johanna Klon-Lipok, Sergio Neuenschwander, Ralf Galuske, and Kerstin Schmidt for assis-
tance during data acquisition. We are also thankful to Raul C. Muresan, Gaby Schneider, Alexander Martinez-Marco,
and Weija Feng for valuable input during data analysis.

Correspondence should be addressed to Dr. Danko Nikolić, Max Planck Institute for Brain Research,
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replicate across repeated stimulus presentations allows for reli-
able coding.

Materials and Methods
Surgical procedures. In five adult cats (three males; two females), anesthe-
sia was induced with a mixture of ketamine (Ketanest; Parke-Davis; 10
mg/kg, i.m.) and xylazine (Rompun; Bayer; 2 mg/kg, i.m.). After trache-
otomy, anesthesia was maintained with 70% N2O and 30% O2, supple-
mented with �1.0% halothane. After craniotomy, the level of halothane
was reduced to �0.5%. When anesthesia was stable and sufficiently
strong to prevent any vegetative reactions, the animal was paralyzed with
pancuronium bromide applied intravenously (pancuronium; Organon;
0.15 mg � kg �1 � h �1). The respiration rate was adjusted manually to
keep end-tidal CO2 at 3– 4%. Rectal temperature was kept at 37–38°C.
Glucose and electrolytes were supplemented intravenously. All proce-
dures complied with the German law for the protection of animals and
were overseen by a veterinarian.

Data acquisition. Recordings were acquired from area 17 using silicon-
based 16-site probes supplied by the Center for Neural Communication
Technology at the University of Michigan (illustrated in supplemental
Fig. S7, available at www.jneurosci.org as supplemental material), as de-
scribed previously by Biederlack et al. (2006). The electrode contacts
(recording sites) had an impedance of 0.3– 0.5 M� at 1000 Hz and were
organized in a 4 � 4 matrix on four shanks, with a distance of 0.2 mm
between the neighboring contacts. Thus, the recording area of one probe
spanned �0.6 � 0.6 mm. The probes were carefully placed to enter the
cortex at a 90° angle (i.e., perpendicularly to the surface of the cortex),
and the uppermost row of electrode contacts was lowered 100 –200 �m
below the cortex surface. Thus, the same probe recorded neurons from
different layers and different orientation columns. We always inserted
two probes simultaneously into area 17 of the same hemisphere, thus
recording from 32 electrode contacts in parallel. In one probe, good
signals were available only on nine recording channels. Thus, in total, we
recorded from 153 sites.

Signals were amplified 1000�, filtered at 500 Hz to 3.5 kHz, and sam-
pled with a frequency of 32 kHz. Action potentials (spikes) were detected
with a two-sided threshold discriminator adjusted manually to yield a
signal-to-noise ratio of �2:1. For each detected action potential, the time
of the event was recorded together with the spike waveform over a dura-
tion of 1.2 ms. Single-unit activity was then extracted off-line by spike
sorting. The distance between neighboring electrode contacts was suffi-
cient to prevent them from recording activity of the same neuron—in no
case did cross-correlation histograms (CCHs) show the high, narrow
peaks in the very center of the CCH characteristic of autocorrelations.
Thus, spike sorting was applied to the signals from each recording site
separately. Spike waveforms were sorted using principal component
analysis (PCA), according to the following two criteria: (1) waveform
separation: the shape of the spike waveforms should be clearly defined
and different from all other waveforms in the multiunit (MU), as indi-
cated by the first three PCA components; (2) refractory period: not more
than 0.5% of spikes should occur with an interspike interval of �1 ms.
The 126 isolated single units (SUs) that satisfied these criteria (7–20
neurons per recording probe) had an average firing rate of 18 � 15
spikes/s (mean � 2 SD) in the most optimal stimulation condition.

Visual stimulation. Visual stimuli were presented on a 21 inch Hitachi
CM813ETPlus monitor with a refresh rate of 100 Hz, positioned at a
distance of 57 cm from the eyes. The pupils were dilated with atropine,
the nictitating membrane retracted with neosynephrine and the cornea
protected with contact lenses containing artificial pupils of 2 mm diam-
eter. After refraction, the eyes were focused on the monitor with correct-
ing lenses. The optical axes of the two eyes were aligned by mapping the
receptive fields (RFs) for each eye separately and placing a prism in front
of one eye to achieve binocular fusion of the RFs. All RFs were deter-
mined by manual mapping with high-contrast white bars on a black
background. Because of the spatial proximity between electrode contacts,
the RFs recorded from one probe always overlapped, producing clusters
that spanned up to �10° of visual angle. The stimuli were always posi-
tioned such that their centers matched the center of the RF cluster.

Stimuli were always presented binocularly, using the presentation
software ActiveSTIM (www.ActiveSTIM.com). In the main set of record-
ings, for which the largest part of the reported analyses was performed,
we presented high-contrast drifting sinusoidal gratings of circular shape,
and varied the orientation and drifting direction in 12 30° steps, thereby
covering the entire circle of 360°. In three cats, the gratings had a spatial
frequency of 2.4°/cycle and covered 12° of visual angle, in two cases
moving with a speed of 2.2°/s and in one with 6.6°/s. In the remaining two
cats, gratings had a spatial frequency of 1 and 2.5°/cycle, respectively,
covering 7 and 18° of visual angle and moving with a speed of 1.5 and 2°/s.

To exclude stimulus-locked spike timing as a cause for the time delays
in CCHs, in three animals we additionally recorded responses to high-
contrast moving bars. The bars were oriented to match the orientation
preference of a majority of the cells and were moved across the receptive
fields in the two directions perpendicular to the orientation of the bar.
Bars spanned 0.5 � 6° of visual angle, appeared on the screen at an
eccentricity of 2° from the center of the RF cluster, and moved across the
center of the cluster with a speed of 1°/s, disappearing after 4 s.

All stimuli were presented 40 –120 times (trials) each, in randomized
order. The recordings were made in two to six blocks, each block consist-
ing of 20 – 60 trials per stimulus condition. Each block lasted 20 –100
min, and often several-hour-long breaks were made between different
blocks. This enabled us to investigate the stability of the relative firing
times over longer periods of time. The responses obtained from the two
simultaneously inserted Michigan probes were analyzed separately (i.e.,
timing relationships between units recorded from different probes were
not investigated here). Thus, for each cat we obtained two datasets (de-
noted A and B). Thus, the total of 8 experiments (5� drifting gratings �
3� bars) yielded a total of 16 data sets, 10 in which we investigated the
stimulus-induced changes in the firing sequences in response to grating
stimuli, and 6 with responses to bar stimuli used to analyze the relation-
ship between the preferred spike delays and the external temporal dy-
namics of the stimulus (i.e., to prove the internal origin of the delays).

Extracting pairwise preferred delays. The preferred spike delay between
pairs of neurons was determined by computing their CCH with 1 ms
resolution across the sustained responses to each stimulus (i.e., excluding
the responses to stimulus onset and offset to eliminate rate covariation
from the CCHs). To ensure that CCHs did not include rate covariation
(Brody, 1999), the responses showing the strongest rate variation (i.e.,
those immediately after the onset and offset of the stimuli) were not
included in the CCH analysis. Hence, CCHs were computed only for the
sustained responses over a duration of 3.2 or 1.8 s for grating and bar
stimuli, respectively. Stimulus-locked rate covariation can be detected by
computing CCHs between responses with shuffled trial orders (i.e., shift
predictors) (Perkel et al., 1967). We computed shift predictors for a
random sample of four datasets and most of these 423 shifted CCHs were
flat, indicating that rate covariation had not contributed to the peaks in
the CCHs. More importantly, regardless of the shapes of the shift predic-
tors, the estimates of phase shifts were identical with and without sub-
traction of shift predictors (r � 0.99; n � 423).

We then fitted a Gaussian function to the central peak of the CCH
(�15 ms) and located its maximum on the x-axis (see Fig. 1 B). When
applied on reasonably smooth CCHs, particularly with 1 ms binning, this
approach estimates preferred spike delays with submillisecond precision
(Havenith et al., 2009). Compared with other typical fitting methods for
CCHs, like damped Gaussian (i.e., Gabor) functions (König, 1994; König
et al., 1995a; Roelfsema et al., 1997; Nikolić, 2007) or cosine functions
(Schneider and Nikolić, 2006; Schneider et al., 2006), the Gaussian func-
tion applied here produced the same results as the other two (r 	 0.95; 91
CCHs tested) but was least sensitive to initial parameter settings and least
likely to enter local minima during the fitting process.

The submillisecond precision of the fitting procedure could be
achieved only if the CCH peak consisted of at least three consecutive bins
(1 ms width each) with at least N � �8 entries (coincident events). With
fewer entries, precision decreased rapidly because of fitting errors (Ha-
venith et al., 2009). This requirement had several implications for the
selection of the data included in the analyses as follows.

(1) Not all neurons in all stimulation conditions generated enough
spikes to enable a reliable assessment of the preferred time delays from
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the pairwise CCHs. This was usually a problem with stimuli of nonopti-
mal orientation, which did not drive the neurons well. If a neuron had
overall low firing rates and participated in CCHs with insufficient entries,
it was completely excluded from the analysis. However, we did retain
neurons that only had “poor” CCHs in some stimulation conditions. The
reason is that our analysis required that the networks of pairwise pre-
ferred delays were complete (i.e., did not contain missing values). The
criterion for the inclusion of a unit was that the Gaussian functions fitted
the CCHs with r 2 � 0.5 in 	50% of the cases. Since the overall preferred
firing time of a neuron was computed from multiple pairwise delays, this
criterion provided sufficiently accurate estimates. This procedure elimi-
nated 48 of the 126 isolated SUs (38%), leaving 78 neurons for additional
analysis (5–12 per recording probe; median, 7 neurons). This criterion
could not be applied for the polar plots of firing times shown in Figure
5B, and for the time-resolved changes in firing times shown in Figure 5, E
and F. These analyses needed to include also responses with very low
spike counts (e.g., for nonpreferred grating orientations). Thus, all neu-
rons with nonempty CCHs were included in these analyses, regardless of
the goodness of fit of Gaussian functions.

(2) As mentioned, some grating orientations evoked particularly low
firing rates in the recorded neurons, producing very sparse, or sometimes
even completely empty, CCHs. Therefore, in some analyses, we had to
exclude the responses to certain grating orientations. A stimulation con-
dition was removed from the analysis if it was not possible to compute a
firing sequence for five or more neurons after applying the criterion ex-
plained in (1). In one data set, neurons responded vigorously enough to
compute firing sequences for all 12 stimulation conditions. The smallest
number of stimulation conditions that entered the analysis was two, and the
median was 3.5. As mentioned above, we did not use these criteria for the
computation of the orientation tuning of the relative firing times.

(3) Finally, it was not feasible to estimate the intertrial variability of
firing sequences directly by determining pairwise time delays for single
trials and to make at the same time a reasonable comparison to firing
rates. This is because, as a result of low firing rates, insufficient entries
were available to estimate CCHs from single trials, which lead to a dis-
proportionate increase in the error of time delay estimates compared
with estimates of firing rates [for an illustration of the trial-to-trial vari-
ability in estimated time delays, see Nikolić (2007) and supplemental Fig.
S9, available at www.jneurosci.org as supplemental material]. This lack
of distributivity of errors in the estimates of time delays is not an indica-
tion of inherent imprecision of time delays but occurs because of the fact
that the measure of delay is extracted indirectly, by fitting a Gaussian
function. The fitting errors of each parameter do not reduce with equal
speed. For example, the baseline of the Gaussian can be estimated with
accuracy that is proportional to 1/�n, where n would denote the amount
of available data (e.g., the number of trials). However, other parameters
(e.g., the mean and the width) can be estimated with a similar rate only
when the baseline is estimated accurately, and the estimate of the peak
delay of the Gaussian is in turn reliant on all three of these other param-
eters. Consequently, the error with which the mean delay of the Gaussian
is measured, is for small numbers of data points, much larger than would
be expected from the widths of the center peaks. In other words, with a
small number of trials (that is, CCHs containing only a small number of
coincident events), the best fit is likely to position the Gaussian at values
far outside the region within which the center peaks of CCHs vary (e.g.,
an estimated delay of 30 ms can be easily encountered). Consequently, an
average of k Gaussian fits, each of which is applied to 1/k of the total
available amount of data, will be much more inaccurate than a single
Gaussian fit calculated for a CCH including all data. This is referred to as
the lacking distributivity of errors. Thus, to obtain accurate estimates in
single trials, each trial would be required to contain an unrealistically
high number of entries (e.g., rich MU instead of SU). Therefore, time
delays had to be estimated always from CCHs calculated across multiple
trials. Because of these limitations, to estimate the variability of firing
times across repeated measurements we randomly split the data sets into
two halves 100 times and calculated CCHs from each half of the data.
This restriction does not apply to rate responses, as they can be calculated
for n individual trials and subsequently averaged to obtain an estimate
with the error decreasing with the usual factor of � 1/�n.

Delays in RF activation. To estimate the delays in activation caused by
the RF properties of different units, we used two different techniques. For
the data shown in Figure 1 D and supplemental Figure S1, B and C (avail-
able at www.jneurosci.org as supplemental material), we applied the
double sliding window technique for the measurement of onset latencies,
based on peristimulus time histograms (PSTHs) (Berényi et al., 2007).
We computed PSTHs with a resolution of 5 ms, and the width of the
sliding window was 400 ms. The method rarely entered local minima,
and the estimated latencies of the response onset corresponded well to
those obtained by visual inspection of the PSTHs. For the data shown in
supplemental Figure S1, B and C, we computed PSTHs with a bin size of
10 ms, and then generated cross-correlation functions of those PSTHs for
delays of �1000 ms. The delays in PSTH peaks were then estimated by
the same procedures based on fitting a Gaussian as used for the regular
CCHs.

Firing sequences. Using the method described by Schneider et al. (2006)
and Nikolić (2007), the matrices of cross-correlation delays (also referred
to as networks) (see Fig. 2 B) between simultaneously recorded neurons
were transformed into linear sequences of preferred firing times. This is
justified if a data set satisfies the principle of additivity: For any three
units A–C, the time delay � between units A and C equals the sum of the
time delays between units A and B and units B and C, as follows:

�AC � �AB � �BC. (1)

If this relationship holds, one can assign each unit k a temporal position
indicating the preferred time xk at which it fires action potentials relative
to all other units (see Fig. 2C). xk is determined as the normalized sum of
all time delays �jk of unit k with respect to all other units j as follows:

xk � � �
j
k

�kj�/n, (2)

where n indicates the total number of units. Thus, if a unit tends to fire
earlier than others, it is assigned a positive value and vice versa, the sum
of all values being always zero. In this way, n(n � 1)/2 pairwise time
delays are condensed into n temporal positions on a single time axis (see
Fig. 2 F). To estimate how accurately this linear representation matched
the original pairwise delays, we computed a measure of the error as the
normalized difference between the distance of the positions of two neu-
rons on the time axis on the one hand, and the preferred delay measured
in their CCH on the other. This error is referred to as additivity error
�Add because it is directly related to the deviation of the original pairwise
delays from additivity (see Eq. 1). The overall error �Add takes into ac-
count all possible pairs of neurons, whereas the individual error �Add(k)

of a unit k only takes into account its pairwise connections with all other
neurons. For more details, see Schneider et al. (2006).

Error measures of firing sequences. To estimate the error variance of the
preferred firing times across repeated measurements, we used several
different error measures. First, we applied a bootstrapping procedure,
whereby we computed firing sequences from a randomly chosen sub-
sample of trials. Each subsample contained one-half of the total number
of available trials, which were sampled with replacement. For each data
set, 100 such samples were made and the SD of the obtained relative firing
times was used as an estimate of the measurement error, referred to as
“bootstrap error,” and is shown in Figures 3E and 4C, and also used in the
computation of mutual information detailed below.

To estimate the stability of the firing sequences over time, we split the
data in two halves as they were recorded in time (i.e., early vs late record-
ing blocks) (unlike the random choice of trials used in the bootstrapping
procedure). For the number of recordings used in each analysis and other
details, see supplemental Table S1 (available at www.jneurosci.org as
supplemental material).

Finally, we also computed a measure of the error variance resulting
from the imperfect additivity of the measured pairwise delays. Pairwise
spiking delays are not guaranteed to be additive. In principle, spike trains
can also produce nonadditive time delays (Schneider et al., 2006). There-
fore, we needed to ensure that the time delays were sufficiently additive to
warrant the application of our analyses. The degree to which the pre-
ferred firing sequence correctly represents the measured pairwise time
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delays is expressed in the average positioning error per unit, �Add [de-
fined as �Add � �̂x in the study by Schneider et al. (2006)]. To obtain
�Add, first the differences between the distance �ij separating two units i
and j on the time axis and their measured time delay �ij are summed up
as follows:

QAdd � �
i�j

��ij � �ij�
2. (3)

Next, QAdd is normalized by the number of time delays that enter its
computation [adapted from the study by Schneider et al. (2006), their Eq.
4] as follows:

�Add � �QAdd

2

�n � 2�n2. (4)

�Add is also referred to as the additivity error because the measured time
delay between two units and their distance on the time axis correspond
only if a data set is additive (see Fig. 2C–E).

In addition to this average error across all units, we computed an
individual positioning error �Add(k) for each unit k, which was used to
determine the widths of the Gaussians above each unit in the represen-
tations of firing sequences shown in Figures 2 F, 3 A, G, 4 A, and 5A.
Similar to the average error for all units, �Add(k) was also computed as a
normalized sum of errors, but only for the time delays �jk of the unit k
with all other units j (j 
 k).

�Add�k� � ��
j
k

��jk � �jk�
2

2

�n � 2�n
. (5)

It can be shown that the mean of � 2
Add(k) across all units k equals the

overall additivity error � 2
Add.

Statistical testing of firing sequences. To statistically test the stimulus-
dependent changes of firing sequences, we applied three tests based on
different types of error variance. First, we tested whether the difference
between two firing sequences exceeded the variance resulting from the
imperfect additivity of pairwise delays. For this purpose, we used the
ANOVA presented in the study by Schneider et al. (2006), termed here
ANOVA-Add, which is based on the positioning error �Add (defined in
the previous section), The resulting F value, computed as the ratio be-
tween the stimulus-dependent differences between two mean firing se-
quences, and the average additivity error �Add, is distributed with (n � 1)
and (n � 1)(n � 2) degrees of freedom and assumes large values if the
positioning error is small and the difference between the firing sequences
is large. The ANOVA-Add is designed only for comparisons between two
firing sequences. Thus, when comparing changes in firing sequences for
more than two stimulus conditions, we conducted multiple pairwise
ANOVA-Adds and controlled for the type I error by correcting p values
using the Dunn–Sidak correction for multiple comparisons (Dunn,
1961). A stimulus-dependent change of firing sequences was considered
significant if across all comparisons the smallest corrected p value did not
exceed p � 0.05.

Second, we corroborated this parametric analysis with a nonparamet-
ric statistical test also designed to investigate pairwise delays (Nikolić,
2007). This test considers only the direction of time delays, ignoring their
magnitudes, and tests whether these directions indicate a consistent rank
order of firing across the units (i.e., if unit A fires before B, and B fires
before C, then A fires before C), a property known as transitivity. Similar
to, for example, Wilcoxon’s signed-ranks test, changes between two fir-
ing sequences are evaluated by computing first the differences between all
pairwise time delays across two stimulation conditions, and then testing
the transitivity of this difference network (matrix). To this end, all sub-
networks of size three (triples) are considered, the total number of non-
transitive triples, CNTrans, is counted, and its significance for a given
network size is taken from a look-up table provided in the study by
Nikolić (2007). The test makes no assumptions about normal distribu-
tion of errors. To correct for multiple comparisons in the transitivity test,
we used an 	 level of 0.01.

Finally, to compare the stimulus-dependent changes of firing se-
quences against their error variance across multiple measurements, we

used a two-way (stimulus by unit) ANOVA for repeated measurements
(ANOVA-RM). We obtained repeated measurements by splitting each
dataset into two parts, analyzing either odd or even trials (according to
the order of presentation). The data sets were only split in two parts
because the estimates of preferred firing delays required fitting CCH with
Gaussian functions, and this procedure is particularly susceptible to pro-
ducing large errors when a small number of data points is used (for
details, see above, Extracting pairwise preferred delays). On these
split-half measures, we applied the ANOVA-RM. Note that a signifi-
cant change of firing sequences cannot be detected by testing the main
effect of the factor “stimulus.” The reason is that the mean of a firing
sequence is, by definition, always zero and, therefore, does not change
across stimulus conditions. Instead, significant changes in firing se-
quences have to be detected through the interaction between the
factors “stimulus” and “unit,” because the positions of individual
units on the time axis change as a function of the stimulus even
though the overall mean of all positions is fixed to zero. The same
split-half repeated-measurement design was also used for the analysis
of rate responses. A comprehensive table of results for all statistical
tests on all data sets is provided in supplemental Table S1 (available at
www.jneurosci.org as supplemental material) (also see below, Uni-
tary event analysis, for a statistical test for detection of temporal
sequence directly in the spike trains).

Sequence-triggered average of the local field potential. The sequence-
triggered average (SQTA) of the local field potential (LFP) displayed in
Figure 3B is computed by first averaging the LFP signals recorded across
all electrodes with which we recorded also spiking activity. Next, the
classical spike-triggered average (STA) of the LFP is computed for each of
the neurons in the sequence. Finally, to obtain the SQTA, the relative
positions of the individual STAs are offset according to the relative firing
times of the corresponding neurons, and then averaged. For example, if a
sequence includes two neurons with the preferred firing times of �2 and
�2 ms, the two corresponding STAs would be averaged with an offset of
4 ms.

Oscillation frequency of CCHs. To determine the dominant frequency
of oscillation for each CCH, we first generated an extended CCH over a
time window of �128 ms, and then computed its fast Fourier transform
to obtain the power spectrum. The power spectra showed a well defined
single peak in the range of 20 – 60 Hz in almost all cases. The frequency of
each CCH was defined as the frequency with the highest power within
this frequency range.

Orientation and direction tuning of firing times. In each of the polar
plots in Figure 5B, a constant time, tc, needed to be subtracted from the
firing times of the unit relative to all the other units for all 12 stimulus
directions. The reason was that, unlike rate responses, relative firing
times do not have an absolute zero. Hence, the choice of tc was arbitrary
and, in turn, affected strongly the degree to which firing times appeared
direction selective (i.e., the “sharpness” of the tuning curve). Thus, in
Figure 5, B and C, the sharpness of orientation and direction selectivity
should not be compared across firing rates and firing times. We chose
values of tc that approximately matched the sharpness of the correspond-
ing rate tuning curves to facilitate visual comparisons of their orientation
and direction preferences. Importantly, the subtraction of tc neither af-
fects the estimates of the preferred stimulus direction nor the Pearson’s
correlation coefficient, r, calculated between firing rates and firing times
across the 12 stimulation conditions.

Time-resolved analysis. The time-resolved analysis of firing times and
firing rates was applied to three data sets of 5–7 SUs (n � 17 units in total)
that were taken from the three oscillatory recordings. Firing sequences
and mean firing rates were extracted for analysis windows of 450 –550 ms
duration that were moved in 10 ms steps. All the units in a group had
overlapping RFs. To compare the modulation amplitudes of firing rates
and firing times, we fitted both types of responses with sine functions of
the same temporal frequency as the presented grating stimuli. For firing
rates, the modulation amplitude was then determined by comparing the
amplitude of the sinusoidal modulation of the rate response by the grat-
ing (F1) to the mean change in response amplitude from spontaneous to
stimulus-evoked activity (F0), known as F1/F0 ratio (Movshon et al.,
1978a,b; Skottun et al., 1991). Rate responses with an F1/F0 ratio 	1
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were classified as simple, whereas rate responses with an F1/F0 ratio �1
were classified as complex. For firing times, the modulation amplitude of
the fitted sine was not normalized, but simply expressed in milliseconds.

Mutual information. The mutual information (MI) was calculated be-
tween rate or time responses (r) of individual neurons on one side, and
the visual stimuli (s), on the other side by using the following equation:

MI�r,s� � �
r,s

p�r,s� log
p�r,s�

p�r�p�s�
, (6)

where p(r) and p(s) are probability distributions of responses and stimuli,
respectively, and p(r,s) is the joint probability of responses and stimuli. In
the experiment, the p(s) was kept constant for all possible stimuli [i.e.,
p(s) � 1/n, where n is the number of different stimuli]. p(r) and p(r,s)
were calculated based on conditional probability p(r�s) by using the fol-
lowing equations:

p�r� � �
s

p�r � s�p(s) (7)

and

p�r,s� � p�r � s� p�s�. (8)

The conditional probability p(r � s) for both firing rates and firing times
was approximated by assuming that the responses follow Gaussian dis-
tribution for which the mean and SD were estimated by a bootstrapping
procedure described above (see Error measures of firing sequences).

The maximum possible entropy of stimuli, MImax, is the upper
bound for mutual information with other variables and varied be-
tween 1 bit, for two different stimuli, and 3.6 bits, for 12 stimuli.
Consequently, the capacity for carrying stimulus-related informa-
tion, pMI, was expressed as proportion of the maximum possible
information that was transferred:

pMI � MI/MImax. (9)

The MI and pMI values for rate responses and for relative firing times of
a neuron were calculated from identical spike trains.

Oscillation score. The oscillation strength in a data set was estimated by
computing its oscillation score (OS) (Muresan et al., 2008). To this end,
an autocorrelation histogram (ACH) was computed with 1 ms resolution
for each unit and for each investigated stimulus condition. The OS is
defined as the ratio between the power at the strongest frequency within
a band of interest, which covers in our case the upper beta/lower gamma
band (25–50 Hz), and the average power of all other frequencies in that
band. The OS computes a corrected oscillation power by removing the
artifacts induced by the presence of the center peak in the ACH and by
possible bursting behavior of the cells. An OS of 5 for a preferred fre-
quency of 40 Hz indicates that the oscillatory power at 40 Hz is five times
larger than the average power in all the other investigated frequencies.

Within a data set, the units tended to have similar OS, indicating a
collective fluctuation in the level of oscillatory activity. Thus, the overall
oscillation strength for a data set was estimated simply as the average OS
for all individual ACHs. In accordance with the recommendations given
by Muresan et al. (2008), data sets with an average OS � 5 were classified
as oscillatory, and data sets with an OS � 5 as nonoscillatory. For the
responses to gratings drifting in different directions, seven data sets were
classified as nonoscillatory (OS, 1.5– 4.8; mean, 3.2; median, 3.5) and
three as oscillatory (OS, 6.0, 6.3, and 7.2).

Unitary event analysis. Unitary events were determined by dividing the
spike responses to gratings (300 ms after stimulus onset until stimulus
offset) into short consecutive time windows (2 and 5 ms; results shown
only for 5 ms windows). A unitary event was defined as a group of spikes
fired within a time window, and the size of the unitary event was defined
as the number of spikes in that window. The frequency of occurrence
(events per second) was computed for each size of unitary event.

To investigate the stimulus specificity of unitary event distributions,
spike trains were shifted in two ways: In one, the shift of each spike train
compensated for the delay in the relative firing time of that neuron in the
preferred firing sequence (“correct shift”). These shifts were expected to
reduce maximally the average delay between action potentials. Hence,

this procedure should maximize the number of large unitary events (and
concomitantly reduce the number of small unitary events). In the second
type of shift, spike trains were shifted according to the preferred firing
sequences obtained in response to the other stimuli (“incorrect shift”). If
the temporal structure of the spike trains is stimulus dependent, this type
of shift should either not reduce the delays between action potentials
(e.g., if stimuli are mostly dissimilar) or reduce them less efficiently (e.g.,
if similar stimuli are used for correct and incorrect shifts).

To assess the significance of the differences in the sizes of unitary
events f, we computed the average frequency of occurrence (number of
events per second) in spike trains shifted either correctly, Fc, or incor-
rectly, Fi, and then computed the normalized frequency based on the
average for correct and incorrect shifts: Fnc � Fc/(1⁄2 Fc � 1⁄2 Fi) and Fni �
Fi/(1⁄2 Fc � 1⁄2 Fi).

Given that the frequencies with which unitary events of different sizes
occurred were mutually dependent—if the number of large unitary
events increased, the number of small ones necessarily decreased—we
had to test for the significance of a change by examining the interaction
between the correctness of the of the shift and the size of the unitary event
in a two-way ANOVA. The p value of the interaction term indicated
whether shifting the spike trains in the different ways affected the shapes
of the distributions of unitary event sizes. The Fn ratios obtained for each
stimulus condition were treated as repeated measurements and the null-
hypothesis (H0) was that the distributions of unitary event sizes do not
increase as a result of a correct shift of a spike train compared with
incorrect shift. The results of this test are listed in supplemental Table S1
(available at www.jneurosci.org as supplemental material).

To investigate whether oscillations had an effect on the sizes of unitary
events, this approach was modified such that the two-way ANOVA had a
factor strength of oscillation instead of correctness of the shift and was
made using the Fnc values only (see Fig. 8 I).

The significance of changes for each event size separately (see Fig.
8 E–H ) was tested nonparametrically: We computed ratios between cor-
rectly shifted and original spike trains, Fc/Fo, incorrectly shifted and orig-
inal spike trains, Fi/Fo, and correctly and incorrectly shifted spike trains,
Fc/Fi. A binomial test was made for the number of firing sequences with
the ratio 	1.0, given the total number of firing sequences with unitary
events of that size. The binomial probability was computed for obtaining
the observed count by chance (i.e., assuming that each firing sequence
has equal probability of 0.5 of producing a ratio 	1.0 and �1.0).

As a control, we applied all of the above-described analyses to trial-
shuffled spike trains. Trial shuffling eliminates unitary events that are
generated because of the internal organization but retains those that
emerge from the responses that are time-locked to the external stim-
ulus and those that occur by chance. In this case, the average frequen-
cies of unitary events were estimated from 200 repetitions of the
shuffling procedure.

Results
Neurons fire with consistent delays at the millisecond scale
We obtained simultaneous extracellular recordings of SU activity
from area 17 of five cats using 16-channel Michigan probes. Vi-
sual stimuli consisted of sinusoidal gratings drifting in 12 differ-
ent directions closing a full cycle of 360°, or of bars moving in two
different directions. Gratings were presented 40 –120 times (tri-
als) each, and bars 20 – 40 times each. In each recording, we in-
vestigated firing sequences formed by 5–12 well isolated SUs
recorded simultaneously (78 SUs in total) (for examples of spike
waveforms, see supplemental Fig. S1A, available at www.
jneurosci.org as supplemental material).

Internally generated temporal relationships can be deter-
mined using as reference the population activity (e.g., the LFP)
(Dragoi and Buzsáki, 2006; Kayser et al., 2009; Vinck et al., 2010).
When the activity of multiple neurons is recorded simultane-
ously, another possibility is available: Temporal relationships be-
tween the recorded neurons can be extracted directly from their
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own action potentials (Schneider et al., 2006; Nikolić, 2007). In
the present study, we opted for this second possibility.

To this end, we first estimated the dominant (preferred) delays
between pairs of neurons, by computing CCHs and fitting a Gauss-
ian function to the central peak (Fig. 1B) (König, 1994; Schneider
and Nikolić, 2006; Havenith et al., 2009) (see Materials and Meth-
ods). The dominant delay is defined by the peak of the fitted func-
tion. Clearly, this dominant delay does not occur every time a pair
of neurons generates coincident spikes, as indicated by the widths
of the CCH peaks, whose width at half-height varied between 5
and 20 ms. For many pairs of neurons, the deviations from the
preferred spike delay were sufficiently small to maintain consis-
tently the order of firing— one neuron firing reliably earlier than
the other (see supplemental Fig. S2, available at www.jneurosci.
org as supplemental material).

We next verified that the preferred delays had a truly internal
origin by computing shift predictors (Perkel et al., 1967). The
shift predictors were flat for all CCHs, indicating that the CCH
peaks, and their shifts, were not produced by locking of the re-
sponses to the stimulus. Single bars moving over RFs (Fig. 1A,B)
activated cells at different times because of the spatial offsets of
the RFs, producing effectively delays in activation onset (Fig. 1C).
However, these onset delays were not correlated with those ex-
tracted from the CCHs (r � 0.14; p � 0.14; n � 107) (Fig. 1D),
and neither were the delays with which the cells reached the peaks
of activation (supplemental Fig. S1B,C, available at www.
jneurosci.org as supplemental material). Moreover, the activa-
tion delays were �2 orders of magnitude larger than those in the
CCHs (Fig. 1D). Thus, firing sequences were not generated by
sequential stimulation of spatially shifted border of RFs.

Pairwise spike delays reflect a preferred
sequence of firing
Figure 2 illustrates the extraction of a fir-
ing sequence for a set of seven neurons
with overlapping RFs (Fig. 2A), activated
by a drifting sinusoidal grating. Although
the network of pairwise delays appears
complex (Fig. 2B), its structure is simple
because the delays are predominantly ad-
ditive. That is, for any three units A–C, the
delay A–C approximates the sum of the
delays A–B and B–C (Fig. 2C) (Eq. 1)
(Schneider et al., 2006; Nikolić, 2007). If
all neurons fire in all spike sequences (i.e.,
all spike sequences are complete), the ad-
ditivity of preferred delays is a mathemat-
ical necessity despite any variability of
pairwise firing delays. However, under
more realistic conditions, neuronal activ-
ity is sparse and only a fraction of neurons
participates in a synchronized population
response. In this case, spike sequences
are mostly incomplete. Under such cir-
cumstances, additivity of spike delays is
possible (Fig. 2 D) but not guaranteed
(Fig. 2 E).

Based on the additivity of delays, a sim-
ple arithmetic (Schneider et al., 2006;
Nikolić, 2007) (Eq. 2) allows one to trans-
form the entire network of temporal rela-
tionships into a simple one-dimensional
sequence (Fig. 2F). This sequence shows
the preferred firing times of neurons rela-

tive to each other. The deviations from additivity, and therefore
the uncertainty with which the units can be positioned on the
time axis, are indicated by Gaussians (Fig. 2C) (Eq. 5). These
errors refer to the inconsistencies between the preferred delays
(i.e., CCH peak positions) and do not indicate directly the vari-
ability across individual coincident events. The latter is indicated
by the widths of the CCH peaks (shown in Fig. 2G; for more
examples, see supplemental Fig. S3, available at www.jneurosci.
org as supplemental material), which are much larger. This dif-
ference between the two indicators of variability in firing
sequences corresponds— both conceptually and quantitative-
ly—to the difference between the error of the mean (relatively
small) and the variability within the original statistical sample
(relatively large). A very similar increase in variability can be seen
in firing rates when, similarly to the computation of a CCH, they
are estimated on the basis of individual interspike intervals (see
supplemental Fig. S4, available at www.jneurosci.org as supple-
mental material).

In Figure 3A, we show a firing sequence of five neurons in
relation to the period of the underlying beta/gamma oscillation.
The total span of the sequence, 7.88 ms, was much shorter than
the oscillation period (37.24 ms; corresponding to 26.9 Hz), il-
lustrated here by the sequence-triggered average of the LFPs
(adapted from the spike-triggered average of the LFP) (see Ma-
terials and Methods) (Fig. 3B). Thus, the firing sequence occu-
pied mostly the peak of the oscillation cycle. Similar results were
obtained in all recordings: The 43 investigated firing sequences
(10 data sets with 2–12 stimulus conditions, one sequence per
stimulus condition; each sequence containing 5–12 neurons;
median, 7 neurons) covered on average 6.60 � 1.49 ms (mean �

Figure 1. Extraction of pairwise time delays and their internal origin. A, A moving bar stimulus sweeping across a pair of
overlapping RFs of neurons in cat area 17. B, CCH of the two neurons shown in A, with a zoom into the peak of the CCH to which a
Gaussian is fitted to estimate the preferred time delay between the units. The shift of the center peak to the left indicates that unit
B fires earlier than unit A. C, PSTHs for the same responses as in B. The vertical dashed lines indicate the approximate times at which
the bar entered the receptive fields of the units, unit A being activated before unit B. Red line, The time window for which CCH is
computed. D, A scatter plot between the differences in the activation latency and the time delays extracted from the CCHs,
computed for 107 pairs of neurons.
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SD), whereas the underlying oscillation
cycles lasted 59.14 � 16.14 ms (21.2 � 4.3
Hz). The firing sequences never spanned
more than approximately one-third of
the length of the oscillation cycle. In
contrast to the hippocampus in which
the delay between the discharges of dif-
ferent place cells is directly related to the
period of the theta oscillation (Geisler et
al., 2007), we found no evidence that the
time span of the firing sequences de-
pended on the period of the underlying
oscillation (Fig. 3C). Consequently, rel-
ative firing times were always expressed
in milliseconds rather than phase
angles.

The time spans of firing sequences
were much larger than the measurement
errors (Fig. 3D). On average, the median
additivity error was only 0.25 ms (highly
skewed distribution; average additivity er-
ror, 0.44 � 0.49 ms; the examples in Figs.
2F and 3A have average additivity errors
of 0.25 and 0.53 ms, respectively). Similar
results were obtained when, instead of the
additivity error, we used the bootstrap er-
ror computed across multiple estimates of
firing sequences (Fig. 3E), or if, instead of
the total time span of the sequence, we
computed its dispersion (i.e., the SD of
the individual firing times) (data not
shown). In all cases, the preferred firing
times of neurons exhibited little variabil-
ity and could be distinguished reliably.
The variability of the delays across indi-
vidual coincident events, as indicated by
the average width of the CCH peaks at
half-height (shown, for example, in Fig.
2G) was, as would be expected, consider-
ably larger. Yet in most cases even the half-
widths of the center peaks were smaller
than the total time span of most firing se-
quences (Fig. 3F).

We also determined whether firing se-
quences were stable over prolonged peri-
ods of time. We repeatedly recorded the
responses of neurons to the same stimuli
and compared blocks of recordings made
3–12 h apart. An example is shown in Fig-
ure 3G. Although small changes in the se-
quence can be seen, the relative firing
times of the majority of neurons shifted
only within the range of the additivity er-
rors. Also, the ordinal positions of the
neurons in the firing sequence remained
mostly fixed. Thus, the firing sequence can be characterized as
relatively stable over this prolonged period of time. Similar re-
sults were obtained with all other firing sequences: The jitter of
the relative firing times had a median of only 0.86 ms (highly
skewed distribution; average root-mean-squared deviation,
1.65 � 1.16 ms). For the example in Figure 3G, the mean jitter
was 0.56 ms. Thus, neurons that fired early (late) during one
recording fired early (late) also during a later recording. In sup-

plemental Figure S5 (available at www.jneurosci.org as supple-
mental material), we show that the estimates of firing sequences
are also robust against subsampling of the neurons belonging to a
synchronized assembly—the relative firing time of a neuron can
be estimated accurately when compared with a small number of
other neurons, without referencing to the global population ac-
tivity, as reflected, for example, by the LFP (Schneider et al.,
2006).

Figure 2. Extraction of firing sequences. A, Cluster of overlapping receptive fields of seven neurons, and the relative positioning
of the grating stimuli. B, A network of seven units with all possible pairwise time delays and their directions (arrows). The original
CCHs are shown for five delays. C, Illustration of the additivity between pairwise time delays using an example of three time delays
extracted from B and showing the corresponding error of additivity. D, Illustrative set of action potentials for three neurons ( A–C).
Although neurons do not fire together as a group in the same population response, each neuron maintains its preferred relative
firing time across individual spiking events. As a result, the preferred pairwise delays between neurons are additive. E, An example
similar to that in D but illustrating a case in which the delays are not additive. F, The firing sequence extracted from B by applying
the principle of additivity. The position of the neuron on the time axis indicates its relative preferred firing time, positive values
corresponding to earlier firing. Gaussians indicate additivity errors (extent, �2 SD). Note that the individual firing times in a given
sequence always sum up to zero. G, The variability of the delays in individual coincident events is indicated by superimposing for
each neuron in the sequence a Gaussian indicating the average peak width at half height of its CCHs with all other neurons.
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The preferred firing sequence is stimulus dependent
To explore stimulus-dependent changes, we analyzed firing se-
quences in response to gratings drifting in different directions.
Figure 4A shows the change of the firing sequence from Figure
3G when the drifting direction of the grating was altered. The
relative firing times of the neurons clearly changed to a much
larger extent. For different drift directions (Fig. 4A), the largest
shifts in relative firing time exceeded 4 ms, with a root-mean-
squared distance of 2.06 ms, compared with 0.56 ms for the vari-
ability of responses to the same stimulus (Fig. 3G). The

corresponding CCHs in Figure 4B illus-
trate these results on a pairwise basis. To
test the significance of the changes
shown in Figure 4 A (different stimuli),
we used first a repeated-measurement
ANOVA (ANOVA-RM), based on vari-
ability of the estimates of delays from
different subsets of trials. The differ-
ences were statistically significant
(FRM(10,22) � 20.6; p � 0.001). Second, we
examined whether the additivity between
pairwise delays also indicated a significant
change. To this end, we used specialized
tests for additivity statistics, which come
both in a parametric version, called
ANOVA-Add (Schneider et al., 2006),
and in a nonparametric version, called
transitivity test (Nikolić, 2007). In both
cases, the differences were significant
[FAdd(10,90) � 9.5, p � 0.001; CTrans(11) �
10, p � 0.001]. In contrast, changes in Fig-
ure 3G (same stimulus) were, according to
all these tests, not significant (all values of
p 	 0.08) (for detailed statistical results,
see supplemental Table S1, available at
www.jneurosci.org as supplemental ma-
terial). Across all recordings, the observed
magnitudes of stimulus-induced changes
were consistently larger than either addi-
tivity errors, bootstrap errors, or errors
across repeated recordings. However, as
would be expected from, for example,
Figure 2G and supplemental Figure S4
(available at www.jneurosci.org as sup-
plemental material), stimulus-induced
changes were often smaller than the to-
tal variability of individual delays in fir-
ing times, as indicated by the widths of
CCH peaks (Fig. 4C) (for similar con-
clusions being derived from a direct
analysis of the timing of individual spik-
ing events, see Fig. 8).

In Figure 5A, we show changes of a fir-
ing sequence of eight neurons for 12 dif-
ferent stimulus conditions—the grating
direction shifting in 30° steps. A gradual
change in the grating direction evokes a
gradual change in the relative firing
times—which allows us to determine ori-
entation “preferences” and distinct tun-
ing curves, shown as polar plots in Figure
5B. Hence, similarly to the rate responses
in early visual areas (Hubel and Wiesel,

1962) (Fig. 5C), relative firing times are selective for the orienta-
tion and movement direction of visual stimuli. The orientation
sensitivity of firing times was detectable also in multiunit signals
(supplemental Fig. S6, available at www.jneurosci.org as supple-
mental material). The firing sequences of multiunits covered
shorter time spans, but, interestingly, the reliability of these firing
sequences was even higher, which could be explained by an in-
crease in the total number of coincident spiking events that en-
tered the analysis (supplemental Fig. S6, available at www.
jneurosci.org as supplemental material).

Figure 3. Precision of firing sequences and their relationship to the underlying oscillatory rhythm. A, A firing sequence ex-
tracted for five neurons (the average widths of the CCH peaks are shown in supplemental Fig. S3A, available at www.jneurosci.org
as supplemental material). B, The firing sequence in A shown in relation to the LFP, computed as sequence-triggered average of
LFP. C, Distributions of delay magnitudes for CCHs that display different oscillation frequencies. All CCHs used in the present study
(n � 1351) are grouped according to the oscillation period, extracted from their FFT. The distributions of the associated delays are
shown in absolute values. Red line, Median. Box ends, 25th percentile. Whiskers, The largest (smallest) data point not exceeding
the box end by more than 1.5 times the box size. Red crosses, Outliers. D, E, The relationships between the total time span of the
sequences on x-axes, and two different estimates of errors (additivity and bootstrap error), on y-axes. The results are shown for all
43 investigated sequences. Diagonals, Identity lines. F, The relationship between the total time span of all 43 investigated
sequences and the average variability of the individual coincident events indicated by the width of the CCH center peak at
half-height. G, A firing sequence estimated twice for the same neurons and in response to the same stimuli, recordings being made
�7 h apart. The average widths of the CCH peaks are shown in supplemental Figure S3B (available at www.jneurosci.org as
supplemental material).
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These results were replicated in all our recordings. Firing
sequences always changed as a function of the grating orien-
tation, and, as would be expected from an interpretable code,
the degree of significance depended on the magnitude of the
stimulus change, larger changes in grating orientation causing
significant changes more frequently than small ones (e.g., for
ANOVA-Add, 67.4% of comparisons were significant for 30°
changes, but 90.3 and 86.7% for 60 and 90° changes). The
significance of the changes also depended on the number of
action potentials included in the analysis. In Figure 5A, the
smallest additivity error [widths of Gaussians (e.g., directions
210 and 240°)], and hence the highest degree of significance,
was obtained in the conditions with the largest total number of
action potentials (Fig. 5A, bars on the far right). When the data
sets were split into two equally sized groups according to mean
firing rates, the data sets with high firing rates showed smaller
additivity errors, and correspondingly more significant
changes in firing times than those with low firing rates (mean
additivity error of 0.34 � 0.39 ms and 0.53 � 0.34 ms, result-
ing in 100 vs 40% of data sets significant according to
ANOVA-Add and 100 vs 60% according to ANOVA-RM). The
stimulus-dependent changes of firing sequences across differ-
ent cortical depths and cell types (regular spiking vs fast spik-
ing) are shown in supplemental Figures S7 and S8 (available at
www.jneurosci.org as supplemental material), and statistical
analyses are detailed in supplemental Table S1 (available at
www.jneurosci.org as supplemental material).

Firing sequences change independently of firing rates
Interestingly, the tuning curves of relative firing times matched
only partially those of the rate responses. Figure 5C shows rate
tuning curves for the same eight neurons as Figure 5B. For some
neurons, rate and firing time tuning matched (e.g., the fourth and
sixth neuron from the left); for others, it did not (e.g., the second
and fifth unit). Correspondingly, when correlations between rate
and firing time tuning were computed across all 27 neurons for
which tuning curves could be determined, the mean correlation
coefficient was positive but small [r � 0.28 (i.e., 8% of shared
variance)] (for the distribution of r values, see Fig. 5D). The
results shown in supplemental Figure S5 (available at www.
jneurosci.org as supplemental material) suggest that this small
correlation cannot be explained by the choice of neurons in rela-
tion to which the relative firing time is estimated.

A sliding-window analysis along the time course of the stim-
ulus presentation also revealed that the firing rates and firing
times changed independently. In three data sets of five to seven
SUs (n � 17 in total), an analysis window of 450 –550 ms width
was slid in 10 ms steps to investigate neuronal responses to a
grating drifting in a direction preferred by a majority of cells. For
each sliding step, the relative firing times and mean firing rates of
the neurons were computed from 40 to 120 stimulus presenta-
tions. Typically, the preferred firing times changed depending on
the phase of the grating (Fig. 5E), but these changes were not
correlated to the changes of firing rates (Fig. 5F). Moreover, the
amplitudes of the modulations, measured by the F1/F0 ratio

Figure 4. Stimulus-dependent changes of preferred firing sequences. A, The firing sequence from Figure 3G (top row) changes when a grating with a different direction of the drift is presented
(bottom row) (for the average widths of the CCH peaks, see supplemental Fig. S3C, available at www.jneurosci.org as supplemental material). B, Corresponding changes in the positions of the center
peaks in CCHs shown for five pairs of neurons. Diamonds, The colors of the neurons in A that produced the respective CCHs. Light red, 330° direction of drift, left-side y-scale. Blue, 120° direction of
drift, right-side y-scale. The dashed vertical line indicates zero time shift. C, The magnitude to which the average relative firing time of neurons changes as a function of stimulus property (ordinate)
compared with the following four measures of variability (abscissa; from left to right): error of additivity, bootstrap error, error variance across repeated recordings, average width of CCH peaks.
Stimulus change, Mean change of firing times across stimulation conditions (in milliseconds). Each data point is one recording.
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(Skottun et al., 1991), were also unrelated
(Fig. 5G): Across the 17 SUs included in
the analysis, the correlation between the
modulation amplitudes of firing times
and firing rates was r � 0.07 (Fig. 5G), and
units classified as complex (F1/F0 �1) did
not differ in the modulation strength of
their relative firing times from units clas-
sified as simple (F1/F0 	1) [t test: t(15) �
0.37; p � 0.72]. These moment-to-
moment adjustments of firing sequences
to continuously changing stimulus prop-
erties account partly for the variability of
spike delays indicated by the widths of
CCH peaks typically computed along the
entire stimulus presentation. Also, these
results confirmed our initial result that
firing rates and firing times contain
mainly complementary information
about visual stimuli.

Firing sequences encode stimulus
information less reliably than
firing rates
As Figure 3G illustrates, firing sequences do
not repeat exactly but vary somewhat across
repeated stimulus presentations—as is the
case with any other biological measure, in-
cluding firing rates (Softky and Koch, 1993;
Shadlen and Newsome, 1998). To investi-
gate how firing rates and firing times com-
pared in the reliability with which they
carried stimulus-related information, we
computed the MI between the stimuli on
the one hand and the firing times and rates
on the other.

In Figure 6, A and B, we illustrate, for a
representative neuron, the variability across
repeated measurements of firing times and
firing rates. The error variance across these
measurements was always smaller than the
stimulus-related variance. Consequently, a
good share of information about the stimu-
lus was transferred by both measures (42
and 65% of the available information trans-
ferred by firing times and firing rates, re-
spectively; maximum MI � 3.6 bits).

Overall, both firing rates and firing
times exhibited ample capacity for carry-
ing stimulus-related information. Firing
sequences could not always be computed
across all 12 stimulus conditions, because
not all stimuli evoked a sufficient number
of action potentials to calculate a com-
plete set of CCHs (see Materials and
Methods, Extracting pairwise preferred
delays). Consequently, the number of
stimuli included in the MI analysis ranged
between 2 and 12. To take into account
the corresponding differences in total en-
tropy (1–3.6 bits), the results are pre-
sented as a ratio of MI and stimulus
entropy, indicated as pMI (1 indicating

Figure 5. Stimulus-dependent changes of firing times are independent of firing rates. A, Firing sequence of eight neurons in
response to gratings drifting in 12 different directions. Bars on the far right, The total number of action potentials available for the
computation of the given firing sequence. For the average widths of the CCH peaks, see supplemental Figure S3D (available at
www.jneurosci.org as supplemental material). B, Changes in the relative firing times for each unit shown in A, drawn as polar plots
to facilitate comparison to the tuning of the firing rate responses. C, Tuning of the firing rate responses for the same cells as in B. D,
Distribution of correlation coefficients between orientation tuning curves of firing times and firing rates for 27 SUs. E, Firing
sequences calculated by a sliding-window analysis for seven SUs stimulated by a grating drifting in the preferred direction. The
sinusoidal luminance pattern in the background reflects the temporal frequency of the grating. The responses are shown as a
function of the time elapsed since the stimulus onset. F, Relative firing times of three units that exhibited a strong modulation of
firing times in E, which we compared with the changes in the firing rates. Colored lines, Firing times with the scale on the left y-axis.
Black lines, Firing rates (PSTHs) with the scale on the right y-axis. G, Modulation amplitude of firing times as a function of the
modulation amplitude (F1/F0) of the rate responses of the neurons (n � 17 neurons).
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that all available information was transferred). For firing rates
and firing times, the average pMI values were 0.75 � 0.23 and
0.44 � 0.23, respectively. Thus, firing rates showed a significant
advantage of �30% of transmitted information over firing times
(paired t test, t(77) � 9.0; p � 0.001) (Fig. 6C).

These conclusions were also supported by a trial-by-trial anal-
ysis (supplemental Fig. S9, available at www.jneurosci.org as sup-
plemental material): The coefficient of variation (the ratio
between SD and mean) of the stimulus-dependent changes across
individual stimulus presentations tended to be smaller in firing
rates than in firing times, but, again, firing times never lagged far
behind. The same held true for the distributions of individual
spiking events— coincident spikes in the case of firing times and
interspike intervals in the case of firing rates. The overlaps within
the two groups of distributions were similar (see supplemental
Fig. S4, available at www.jneurosci.org as supplemental
material).

Coding capacity depends on oscillatory state
It has been reported previously that oscillations at gamma fre-
quencies reduce the variability of rate responses (Rodriguez et al.,
2010). As beta/gamma oscillations support precise synchrony
(Gray et al., 1989; Engel et al., 1991; König et al., 1995a; Maldo-
nado et al., 2000), we hypothesized that oscillations should also
augment the coding capacity of relative firing times.

Oscillation strength was assessed by calculating the OS (Mure-
san et al., 2008) for each neuron, and the pMI—values of both
firing times and rates covered a broader range in neurons with
weak oscillations (OS � �4) than in those with strong oscilla-
tions (OS 	 �6) (Fig. 7A,B) (oscillation strength and frequency
of all neurons are shown in supplemental Fig. S10A–C, available
at www.jneurosci.org as supplemental material). Consequently,
when data sets were categorized according to the overall oscilla-
tion strength, the median pMI was higher in recordings with

strong oscillations than in those with weak oscillations for both
firing times (pMI � 0.37 vs 0.54; 46% difference) and firing rates
(0.73 vs 0.77; 5% difference). A two-way ANOVA indicated that
both factors, oscillation (strong vs weak) and type of response
(rate vs time) were significant [F(1,152) � 8.3, p � 0.0046; and
F(1,152) � 66.1, p � 0.001, respectively]. Thus, beta/gamma oscil-
lations augmented the amount of information transmitted by
discharge rate and by firing sequences—firing rates encoding the
grating directions more accurately than firing times. However,
beta/gamma oscillations improved the time code considerably
more than the rate code (46 vs 5% improvement) (Fig. 7C,D),
and this difference was marginally significant (ANOVA interac-
tion: F(1,152) � 3.2, p � 0.076). These results could not be ex-
plained by different spike counts in recordings with strong and
weak oscillations (supplemental Fig. S10D–G, available at www.
jneurosci.org as supplemental material).

Firing sequences detected directly in raw spike trains
Oscillations also strongly enhanced the consistency with which
individual coincident spikes reflect the preferred firing sequence.
First, as shown in supplemental Figure S2 (available at www.
jneurosci.org as supplemental material), during pronounced os-
cillations the pairwise spike delays between neurons were more
tightly clustered around the preferred delay. Consequently, a
larger proportion of coincident spikes were fired in the preferred
temporal order.

Second, we traced the firing sequences of entire neuronal as-
semblies directly in the spike trains by analyzing the statistics of
unitary events. Significance tests based on ANOVA-RM and
ANOVA-Add cannot assess directly the significance of stimulus-
dependent changes in firing sequences at the level of individual
trials. The present code based on precise spike timing may be

Figure 6. Information content of firing sequences and firing rates. A, B, Mutual information
computed for a representative example neuron (second unit from the left in Fig. 5B). Thick line,
Direction tuning of the relative firing times (A), and the firing rates (B) computed for all 40
stimulus presentations (trials). Gray area, The variation of the estimates when using only half of
the available trials (20 trials each). C, Proportion of transferred stimulus-related information,
pMI, for firing rates and firing times. Diagonal, Equality line.

Figure 7. Dependence of coding performance on gamma oscillations. A, The relationship
between the strength of beta/gamma oscillations and the amount of stimulus-related informa-
tion carried by the relative firing times. B, The same as in A but for firing rates. C, The scatter of
pMI values from Figure 6C but shown separately for data with strong and weak oscillations. Red,
Recordings with strong oscillations. Green, Recordings with weak oscillations. D, Distributions
of differences in the proportion of transmitted information ( pMI) between firing rates and
firing times, computed for data sets with strong (red) and weak (green) oscillations (positive
values: coding advantage for firing rates). Insets, Typical autocorrelation histograms exhibiting
either strong or weak oscillations.
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most useful when decoding is fast (e.g., at single trials or even
oscillation cycles) (for putative decoding mechanisms at different
timescales, see supplemental Fig. S11E–G, available at www.
jneurosci.org as supplemental material). An analysis addressing
much closer the issue of fast decoding was that of unitary events.
A unitary event was defined as a group of spikes fired within a short
time window (5 ms), and the size of the unitary event as the number
of spikes within that window (Fig. 8A). We then compared the fre-
quency with which unitary events of different sizes occurred in the
original spike trains and in spike trains shifted in time to various
degrees (Fig. 8A–D). To investigate how abolishing the delays affects
the sizes of unitary events, we shifted the raw spike trains in two
different ways: In one, the shift of each spike train compensated for
the time delays extracted from CCHs in these data (correct shift)

(i.e., the amount of the shift was the negative value of the relative
firing time of that neuron in the firing sequence). The other type of
shift was based on the firing sequences obtained in response to other
stimuli (incorrect shift). We expected a larger number of large uni-
tary events with a correct than with incorrect shift.

Consistent with this prediction, correct shifts resulted in a
severalfold increase in the frequency of large unitary events
(those including five or more spikes) and in a decrease of small
unitary events (one or two spikes) (Fig. 8E). In contrast, shifting
spike trains incorrectly increased the number of large unitary
events only marginally and this increase was not significant (Fig.
8F). Consequently, large unitary events were more frequent in
correctly than in incorrectly shifted spike trains (Fig. 8G). Con-
versely, small unitary events (one to two spikes) occurred less

Figure 8. Preferred firing sequences can be traced in raw spike trains. A–C, Example spike trains of 11 neurons in response to a grating, shown in the original form (A) and two shifted forms (B,
C). In B, the shift of each spike train corresponds to the negative of the relative firing time of the neuron in the preferred firing sequence (correct shift). In C, the spike trains are shifted according to
a preferred firing sequence obtained for a different stimulus (incorrect shift). Vertical lines, Five-millisecond-long windows within which the size of unitary events was defined as the number of spikes
occurring in that window. B, C, Far right, The respective firing sequence used to shift the spike trains (calculated across 120 stimulus presentations). D, The overall frequencies with which unitary
events of all sizes (maximum, 9) occurred in the data set shown in A–C, plotted on a log-linear scale. Black, Original spike trains, as in A. Red, Correct shifts, as in B. Gray, Incorrect shifts, as in C. Dashed
lines, Frequencies of unitary events computed for trial-shuffled spike trains (see Materials and Methods). E, The ratios between the frequencies of unitary events in correctly shifted versus original
spike trains (e.g., red vs black line in D) calculated across all data (43 firing sequences). Values 	1 indicate more unitary events in the shifted than in the original spike trains. The stars indicate
significance (binomial test; *p 
 0.05; **p 
 0.01) (see Materials and Methods). The stars located at the bottom edge of the panel indicate that unitary events occurred less frequently in shifted
than in original spike trains. The stars located at the top edge of the panel indicate the opposite. F, Same plot as in E, but comparing incorrectly shifted spike trains with the original ones (e.g., gray
vs black line in D). G, Same as E and F, but comparing correctly and incorrectly shifted spike trains. H, Frequencies of unitary events for correctly versus incorrectly shifted spike trains as in G, but split
between weak and strong oscillations. Green, Averages for weakly oscillating data sets (30 sequences). Red, Averages for strongly oscillating data sets (13 sequences). Error bars indicate �1 SD. I,
Same as E, but computed for trial-shuffled spike trains.
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often in correctly than in incorrectly shifted spike trains (Fig. 8G).
This predominance in large unitary events of correctly over in-
correctly shifted spike trains was present in all data sets and
reached statistical significance in 6 of 10 cases (two-way ANOVA)
(for details, see Materials and Methods and supplemental Table
S1, available at www.jneurosci.org as supplemental material),
and the effect was much more pronounced in the data sets with
strong oscillations (Fig. 8H) (two-way ANOVA, F(1,354) � 19.6,
p � 0.0001) (for details, see Materials and Methods). Similar
results were obtained when using 2 ms rather than 5 ms windows
to calculate unitary events (results not shown). In a control anal-
ysis based on trial-shuffled data (see Materials and Methods), the
overall sizes of unitary events were considerably reduced and no
differences were found between correct and incorrect shifts (all
values of p 	 0.05) (Fig. 8 I). The results support directly our
findings obtained from CCHs: Synchronized neurons tend to fire
in sequences and the order within these sequences is specific to
the stimulus.

Discussion
These findings provide evidence that the fine temporal structure
of neuronal activity in the visual cortex reflects stimulus proper-
ties. This temporal structure is not defined relative to external
events but is defined internally, by the relative timing of synchro-
nized spiking events: Synchronized cortical neurons distribute
their action potentials over a temporal window of up to �15 ms,
and within this time period, each neuron has its own preferred
time for generating action potentials, some neurons firing early,
and others late. Most importantly, these preferred firing times are
neither fixed nor arbitrary, but change as a function of stimulus
properties. Thus, the relative firing times have the potential to
convey stimulus information that can be read out by cellular
mechanisms sensitive to spike timing.

Potential origins of firing sequences
In the past, small delays in synchronized activity have been used
to infer chains of synaptic connections and the associated con-
duction delays (Alonso and Martinez, 1998; Usrey et al., 2000). In
our case, such hardwired delays may determine a “baseline”
structure of delays but cannot explain the stimulus-dependent
changes. The observed graded, stimulus-specific tuning exhibited
by firing times cannot arise from anatomically fixed delays.

Mechanisms allowing for flexible adjustments of spike timing
have been investigated in the context of hippocampal theta phase
precession (Magee, 2001; Harris et al., 2002; Mehta et al., 2002;
Harvey et al., 2009), and more recently also in the neocortex in
relation to beta/gamma oscillations (Schneider et al., 2006; Fries
et al., 2007; Tsubo et al., 2007; Tiesinga et al., 2008). In both cases,
spike times appear to be determined by an interplay between
global fluctuations of excitability, likely mediated by the network
of inhibitory interneurons, dynamic changes in excitatory drive
to individual neurons, and by the ion conductances in those neu-
rons (Magee, 2001; Harris et al., 2002; Mehta et al., 2002; Fries et
al., 2007; Tsubo et al., 2007; Tiesinga et al., 2008; Harvey et al.,
2009) (see supplemental Discussion 1 and supplemental Fig.
S11A–C, available at www.jneurosci.org as supplemental mate-
rial). In supplemental Discussion 1, we point out several differ-
ences between firing sequences in the visual cortex and phase
sequences in the hippocampus. One prediction of these studies is
that strong activation should cause early firing. However, this
does not necessarily imply high correlations between firing times
and firing rates, because additional variables like lateral inhibi-
tion and adaptation shape firing rates (Harris et al., 2002; Mehta

et al., 2002), and another, presently unknown, set of factors may
shape firing times. Correspondingly, we found that discharge rate
and spike timing are only loosely correlated. This suggests that
rate and time can convey information independently and may
serve as complementary codes (Harris et al., 2002; Mehta et al.,
2002; Dragoi and Buzsáki, 2006). Thus, allocortex and neocortex
may use similar strategies to extend their coding capabilities by
using both rate and relative spike times as coding space.

When exploring the potential origin of firing sequences in the
visual cortex, it is also important to consider the temporal struc-
ture of the incoming activity. Neurons in the lateral geniculate
nucleus (LGN) generate spike patterns that are timed internally
with similar precision as observed in the present study (Des-
bordes et al., 2008; Koepsell et al., 2009). Although it is not clear
whether the internally timed spikes in the LGN form stimulus-
dependent sequences, it is unlikely that the firing sequences re-
ported here are inherited from the LGN. The reason is that the
oscillations that serve as a timing reference in the LGN occur in
the 60 Hz range, whereas the firing sequences in the visual cortex
are referenced to slower oscillatory rhythms (20 –30 Hz). For a
more detailed treatment of this issue, see supplemental Discus-
sion 1 (available at www.jneurosci.org as supplemental material).

Potential readout mechanisms
Relative firing times can only serve a function if changes in firing
sequences affect cortical processing (i.e., if the coded information
can be read out). A potential obstacle is the fact that firing se-
quences are usually incomplete as neurons do not fire in each
oscillation cycle (supplemental Figs. S11A–D, S12, available at
www.jneurosci.org as supplemental material). Thus, a readout
mechanism sensitive to input time at the millisecond scale needs
to tolerate variations in spike timing as well as the dropout of
spikes from individual neurons (supplemental Fig. S11A–C,
available at www.jneurosci.org as supplemental material). This
requires a mechanism that averages inputs at the population level
without losing track of precise timing relationships (supplemen-
tal Fig. S11D, available at www.jneurosci.org as supplemental
material). Our finding that stimulus information could be ex-
tracted reliably from firing sequences of multiunit responses sug-
gests that timing information remains available even when the
identity of individual units is lost when the responses of a local
population are pooled.

One mechanism capable of evaluating small time delays de-
spite jitter is spike-timing-dependent plasticity (STDP) (Bi and
Poo, 1998; Yao et al., 2004). This mechanism is exquisitely sensi-
tive to temporal sequences, operates at the millisecond level, and
effectively averages over recurring sequences. Correspondingly,
stimulus-locked spike delays of the same magnitude and jitter as
observed in the present study have been shown to efficiently
modify the response preferences of V1 neurons in vivo (Yao and
Dan, 2001; Yao et al., 2004; Meliza and Dan, 2006). In these
previous studies, to evoke spike delays that triggered STDP,
visual stimuli had to be flashed in fast succession (8 –16 ms
presentation delay). In contrast, in natural viewing, stimuli
often evolve more slowly. Our findings show that, by generat-
ing stimulus-dependent spike sequences internally, the cortex
can translate visual information from slower timescales onto
timescales compatible with neuronal integration mechanisms
like coincidence detection and STDP. This principle has a prece-
dence in the hippocampus, where the place sequences produced
by phase precession are used to translate information about a
slower external process (the animal’s movement in space) onto
timescales compatible with neuronal integration and plasticity
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(the theta cycle) (Skaggs et al., 1996; Dragoi and Buzsáki, 2006).
The firing sequences described presently could thus be exploited
for adaptive processes such as perceptual learning (supplemental
Fig. S11E, available at www.jneurosci.org as supplemental
material).

In addition to learning processes, small time delays should
also be relevant in real-time signal processing. There is ample
evidence that neurons are highly sensitive coincidence detectors
and can distinguish between precisely coinciding and temporally
dispersed inputs (Bi and Poo, 1998; Usrey et al., 2000; Ahissar and
Arieli, 2001; Azouz and Gray, 2003; London and Häusser, 2005;
VanRullen et al., 2005; Meliza and Dan, 2006; Fries et al., 2007;
Hausselt et al., 2007; Tsubo et al., 2007; Womelsdorf et al., 2007;
Cardin et al., 2009; Branco et al., 2010). By switching positions in
the firing sequence, the inputs to target cells can either coincide
or disperse in time, and in the case of dispersion, the sequence can
change. This, too, is a relevant variable for postsynaptic activity,
because it matters whether EPSPs at distal dendritic compart-
ments are generated before or after those at proximal sites (Lon-
don and Häusser, 2005; Hausselt et al., 2007; Branco et al., 2010)
(supplemental Fig. S11F,G, and supplemental Discussion 2,
available at www.jneurosci.org as supplemental material). As we
show in Figure 8, if the time delays are properly accounted for by
a readout, the magnitude of the input—as represented by the
total number of conjointly incoming action potentials— can in-
crease considerably. Such a readout would have to be able to deal
with the variability of individual spike delays, as indicated for
example by the widths of CCH peaks, and also would have to
distinguish between two potential sources of this variability: One
is an inherent imperfectness in the time at which neurons gener-
ate action potentials relative to the other neurons and relative to
the underlying oscillation cycle. Because of this variability, an
efficient use of the present code may require a certain degree of
information averaging that can be performed either over time, as
made in the present analyses, or over space (i.e., over larger num-
ber of neurons), as is likely to occur during information process-
ing in the brain. The second source of the variability of time
delays is the continuous change in the contents of this temporal
code. For example, we showed that the relative firing times adjust
continuously along the presentation trial as gratings drift over the
receptive fields. Therefore, another part of the variability of the
relative firing times is not inaccuracy of the code but modifica-
tions of the message communicated by that code.

Oscillation: a “switch” toward coding by firing sequences?
Beta/low-gamma oscillations considerably increased the coding
capacity of firing sequences, making it comparable with the ca-
pacity of firing rates. This is remarkable given that stimulus ori-
entation is one of the most effective variables for modulating rate
responses in the visual cortex. In addition, during oscillations,
preferred firing sequences could be detected more easily in the
spike trains. These findings suggest that sequences are expected to
be most efficient during behavioral states associated with beta/
gamma oscillations. This is the case, for example, during focused
attention (Jensen et al., 2007; Womelsdorf and Fries, 2007;
Tallon-Baudry, 2009), suggesting that the brain is capable of
switching between the relative use of rate codes and temporal
codes in a task- and state-dependent way. Future studies will have
to clarify whether other visual features are encoded more effi-
ciently in sequences than in rate modulations, for example, stim-
uli that cause only minor changes in discharge rate but major
modulation of neural synchrony (Biederlack et al., 2006).

These considerations suggest that precise timing relationships
between the discharges of synchronized neurons can be exploited
to transmit stimulus information. With an appropriate readout
mechanism that averages across a large number of input sources,
information carried by a firing sequence could be possibly read
out even from a single oscillation cycle. This suggests that many
of the principles of spike timing discovered in the hippocam-
pus—such as internal referencing, complementary coding to fir-
ing rates, translation of slow external events onto timescales
compatible with neuronal integration—may find their place also
in the cortex in a slightly altered form associated with faster os-
cillations in beta and gamma range and with neural synchrony.
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place cell assemblies are speed-controlled oscillators. Proc Natl Acad Sci
U S A 104:8149 – 8154.

Gollisch T, Meister M (2008) Rapid neural coding in the retina with relative
spike latencies. Science 319:1108 –1111.

Gray CM, König P, Engel AK, Singer W (1989) Oscillatory responses in cat
visual cortex exhibit inter-columnar synchronization which reflects
global stimulus properties. Nature 338:334 –337.

Harris KD, Henze DA, Hirase H, Leinekugel X, Dragoi G, Czurkó A, Buzsáki
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