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Abstract. Spike train models are important for the development and
calibration of data analysis methods and for the quantification of certain
properties of the data. We study here the properties of a spike train
model that can produce both oscillatory and non-oscillatory spike trains,
faithfully reproducing the firing statistics of the original spiking data
being modeled. Furthermore, using data recorded from cat visual cortex,
we show that despite the fact that firing statistics are reproduced, the
dynamics of the modeled spike trains are significantly different from their
biological counterparts. We conclude that spike train models are difficult
to use when studying collective dynamics of neurons and that there is no
universal ’recipe’ for modeling cortical firing, as the latter can be both
very complex and highly variable.

1 Introduction

The activity of cortical neurons arises from complex firing patterns that are
determined by the intricate brain architecture, the external stimuli and the in-
teraction with subcortical structures [1]. Each cortical neuron receives on the
order of 103 − 104 inputs from other neurons, and hence it is prone to being ex-
posed to a high input bombardment [2]. Indeed, it has been suggested that such
a bombardment exists, and, in addition to a balanced excitation-inhibition state,
it keeps the neuron in a so-called ”high-conductance state” [3]. Moreover, un-
der such heavy input, cortical neurons have a tendency to fire highly irregularly,
such that the distribution of their inter-spike intervals (ISI) takes an exponential
form [4]. As a result, numerous models of spike trains have been proposed [5, 6],
which assume an underlying homogenous (constant firing probability over time)
or inhomogeneous (the instantaneous firing probability can fluctuate over time)
Poisson process [7]. Recently however, the heavy input bombardment hypothesis
has been challenged [8], new [9] and old [10] data suggesting that the assumption



of neurons being simple Poisson spike generators is an extreme oversimplifica-
tion. The firing properties of neurons depend critically on neuron type [11], brain
structure [12], brain state [13], arousal [14], and other factors.

A particular case, where firing is non-Poissonian, is represented by the os-
cillatory discharge of cortical neurons. In such cases, neurons can engage into
various rhythms in multiple frequency bands [15]. The oscillatory firing proper-
ties of neurons can be characterized by computing auto-correlation histograms
(ACH), and we have previously introduced a measure, called Oscillation Score
[16] that is useful in determining the degree to which a neuron oscillates. In or-
der to precisely quantify the oscillation strength we needed to develop a model
of oscillatory spike trains, in which the oscillatory behavior and the firing rate
could be independently controlled [16]. Here, we explicitly study the properties
of this model: the precision with which firing rate and oscillation strength can
be controlled and the ability to independently express the two properties in the
simulated spike trains. In addition, we are interested in the degree to which arti-
ficial spike trains, generated from statistical parameter distributions of recorded
neuronal data, reflect the temporal structure of the latter.

2 The model

The model produces artificial spike trains that retain basic properties of a
recorded data set. The considered properties are: the firing rates, burst probabil-
ity, oscillation strength and frequency, spike counts in bursts, refractory periods,
and intra-burst inter-spike intervals, all of which are quantitatively determined
from biological data. Two processes are used to generate the spike trains: at a
coarse scale a discharge probability function ps(t) (Fig. 1A, B), and at a finer
scale another process (Fig. 1C) that controls the exact spike timings (refractori-
ness, burst properties, etc).

The spike discharge probability ps(t) should have the following properties:
first, it should allow the spike train to exhibit a preferred oscillation frequency for
transient periods of time; second, it should allow control over the strength and
stability of the desired oscillation; and third, it should enable the control over
the firing rates. To control the amount of oscillations, two discharge probabilities
po(t) and pb(t) corresponding respectively to an oscillatory and a background
process are intermixed with a factor o (oscillation strength) (1). To obtain the
transient oscillatory behavior we modulate the frequency of a sine probability
function po(t) (2) by a random process fo(t) (4). This random process takes into
account past values and thus it has memory. The history dependence is given
by a decay constant, τ , while another factor, m, controls the amount of noise
added to the random process. The interplay between τ and m controls how the
oscillation frequency changes over time. The frequency range of the modulatory
function, fo(t), can be bounded to increase the stability of the oscillation. The
background probability pb(t) (3) is generated in the same way except that in this
case, the frequency of the process fb(t) (which has the same form as fo(t)) varies
in a much broader frequency range (Fig. 1B). For a spike to be generated, ps(t)
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Fig. 1. Model for simulation of oscillatory spiking activity. A: Spike discharge prob-
ability. The spike discharge probability ps(t) is obtained by mixing two time-varying
processes pb(t) and po(t) with frequencies fb(t) and fo(t), respectively and with a mix-
ing factor o = 0.3 (see Eq. 1). The amplitude and offset of the two processes are fixed
for one run of the algorithm. A spike can be generated only where ps(t) is positive
(grey band). B: Fluctuations of the modulation functions fb(t) and fo(t). While fb(t)
varies between 0 and 100 Hz (gray) fo(t) varies slowly around 25 Hz due to its strong
history dependence and boundaries (20 to 30 Hz). C: Spiking. A burst of spikes is
represented by grey vertical bars, while a tonic spike is depicted in black. The spikes
are generated taking into account the refractory period after a burst or a tonic spike
r, the intra-burst inter-spike interval bISI and the burst spike count bSpkCnt.

must be positive. The greater ps(t), the greater is the chance that a spike will be
generated and thus, most of the spikes will be concentrated at the peaks of the
probability functions (Fig. 1C). By manipulating the offset (1) we can control
how well the spikes are aligned to the desired oscillation, and by manipulating the
spike-probability-positive-integral (SPPI) (5) trough the amplitude parameter,
A (1), we control the firing rates (Fig. 1A and Fig. 2 - left column) for the
duration T of the spike train. Thus, the value of ps(t) controls the periodicity and
firing rates of spike-trains in a manner that realistically mimics the oscillatory
behavior of the recorded neurons.

ps(t) = A · [o · po(t) + (1− o) · pb(t)− offset] (1)
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1
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s (t)dt (5)

where: p+
s (t) =

{
ps(t), ps(t) ≥ 0
0, ps(t) < 0 (6)

At smaller time scales, the model controls the timings between the spikes
and the burstiness of the spike trains. The burst probability, pburst, is modeled
as a constant ratio between the count of bursts relative to the number of tonic
spikes and burst occurrences altogether. These values can be extracted from a
recorded data set. Once a discharge is initiated based on, ps(t), pburst determines
whether that discharge will be a burst or tonic spike. If a burst is generated,
the number of spikes in the burst bSpkCnt and the spacing between the spikes
within the burst bISI (Fig. 1C) are set according to probabilities measured from
real data. After a tonic spike a refractory period, r, prevents the occurrences of
other discharges in a given period of time. The model makes a clear distinction
between the tonic spikes and bursts. The bursts are defined as groups of spikes
with successive ISIs smaller or equal to 8 ms [17]. Thus, the refractory period,
r, is set to 8 ms such that tonic spikes can occur with an ISI of at least 9 ms.
The control over these timings at a small scale produces a realistic center-peak
shape in the ACH (Fig. 3) of artificial spike trains which model real spike trains.

3 Results

We wanted to address here two important aspects related to the model: the
relationship between firing rate and oscillation strength, on one hand, and the
degree to which the model can reproduce the fine temporal structure of recorded
spike trains, on the other.

3.1 Firing rate and oscillation strength

We computed the relationship between firing rate and oscillation strength by
producing artificial spike trains, with a length of 30 s, and controlling indepen-
dently the two parameters for rate and oscillation strength. The rate parameter
(SPPI; see Methods) and the oscillation strength parameter (o) were varied
in 24 steps. For each combination, two spike trains were produced, yielding a
total of 1152 spike trains. In addition, we generated such spike trains for each
oscillation frequency band separately: theta (4-8 Hz), alpha (8-12 Hz), beta-low
(12-20 Hz), beta-high (20-30 Hz) and gamma (30-80 Hz) [16]. For the oscilla-
tion frequency in the model (fo), we took the central (middle) frequency for
each frequency band. The firing rate and the oscillation score [16] (the mea-
sured strength of oscillation) were measured for each spike train. We found that,
the firing rate could be more precisely controlled for higher than for lower fre-
quency bands (Fig. 2, left column, note the lower variance for higher frequency
bands) while the oscillation score seemed to be controlled equally well across
all frequency bands (Fig. 2, middle column). Moreover, the firing rate scaled as



a power function (R2 > 0.93) with respect to the SPPI while the oscillation
score scaled as a sigmoid with respect to the oscillation strength parameter. The
noisy clouds in Fig. 2 (middle column), that deviate from the sigmoid shape are
due to trials with very small firing rates, for which the oscillation score estimate
becomes imprecise [16]. Finally, there was no correlation between the firing rate
and oscillation score, as shown in Fig. 2, right column (R2 < 0.08). Thus, the
resulting firing rate and oscillation strength can be independently controlled by
the two corresponding parameters in the model.

3.2 Temporal structure of spike trains

Although our model is quite detailed, including statistics of bursting, oscillatory
modulation, and other spike train properties, we wanted to estimate how closely
some model spike trains resemble their corresponding, real, spike trains recorded
from cat visual cortex. We considered data recorded from an anaesthetized cat on
two experimental sessions: one without or poor oscillatory responses (col11b44;
see Fig. 3) and one with strong oscillations (col11b68; see Fig. 3) in the beta-
high frequency band. Since the experimental trials were rather short (6.5 s) we
selected, from one single electrode, multi-unit activity (MUA) such as to yield
sufficient spikes when computing single-trial statistics (see next). We also chose a
stimulation condition (center-surround stimulus, with a small sinusoidal grating
placed in the center and a larger one in the surround) for which the MUA
showed strong oscillatory behavior in col11b68 session but not in col11b44. For
this stimulation condition, we obtained 20 experimental trials in both sessions.
Next, for each experimental trial, one corresponding model trial (spike train) was
generated. We computed the ISI distributions of spikes within bursts (burst ISI),
the burst spike-count distributions, and the firing rate on the experimental trial,
and plugged these parameters into the model, producing an artificial spike train
having the same statistics (see Methods). Importantly, we wanted to model each
trial independently such that the temporal structure of firing is maximally similar
to the corresponding recorded trial. Statistics are thus computed separately for
each trial. For oscillatory spike trains, the oscillation frequency was computed on
the whole stimulation condition and plugged into each model trial (because the
oscillation frequency was very stable across trials in the analyzed dataset). Next,
the autocorrelation histograms (ACH) per stimulation condition were computed
by averaging the ACHs computed on each of the 20 trials. The inter-spike interval
(ISI) distributions were also computed.

In Figs. 3A and 3B we show that the ACHs and ISI distributions of the real
and model spike trains were remarkably similar, both for the non-oscillatory
and oscillatory case. This indicates that statistically, the real and modeled spike
trains had similar local structure. At a first look, one could say that the model
spike train can successfully replace the real one. To get further insight into this
hypothesis, we computed the cross-correlation histograms (CCH) between the
model and their corresponding, real, spike trains. Ideally, if the model success-
fully replaces the real spike train, the CCH should be very similar to the ACHs
of both the real and modeled spike trains. This was, however, not the case. For
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Fig. 2. Control of rate and oscillation strength. On the left column, scatter plots show
the dependence of firing on the spike-probability-positive-integral: SPPI (5). The black
line shows a power fit. The center column depicts the dependency of the measured
oscillation score on the oscillation strength parameter, o, in the model (1). In the right
column, scatter plots of the rate and oscillation score show no dependency between
these two, as indicated by linear fits (black lines).
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Fig. 3. Comparison between recorded and simulated spike trains. A: Non oscillatory
data. The first row shows the ACH (left panel) and the ISI distribution (center panel)
for non-oscillatory data. On the second row, the ACH (left panel) and ISI for simulated
data (center panel) are shown. Note that the ACH and ISI plots are averages across 20
trials of the same condition. On the right panel the average cross-correlation between
each recorded and artificial spike train is shown. B: The same plots as in A are shown for
oscillatory data. The similarity of ACHs and ISI distributions between the recorded and
simulated data is again clear. C: Differences between the recorded and simulated spike
trains. The spikes are shown on the left: recorded data (upper traces, 20 consecutive
trials) and simulated data (lower traces). For one recorded spike train and for its
artificial model (both depicted in black) the ACHs (right panels) and ISI distributions
(bottom panels) are shown. For each plot depicting recorded data the dataset, neuron,
and condition labels are shown above the graph; for simulated data ”simulation” is
shown.

non-oscillatory spike trains (Fig. 3A) the CCH was flat, without a peak, indicat-
ing that there was no consistent relationship (fine temporal correlation) between
real and modeled spike timings. The oscillatory case was somewhat better, such
that weak oscillatory modulation could be seen in the CCH (Fig. 3B), but the
central peak was missing here as well. These results suggest that, although the
statistical properties of the original spike trains are faithfully reproduced, the
temporal dynamics of the trials are not reproduced. We show in Fig. 3C that, for
a given spike train and its model, the ACHs and ISI distributions had reasonably
close structure, but the location of spikes within the real and model trials was
strikingly different. In the real spike train there was a clear modulation of the
firing by the drifting sinusoidal grating stimulus. In the modeled spike train, the
firing events were more or less arbitrarily located, despite the fact that global
ISI statistics and ACHs structure were accurately reproduced (Fig. 3C).

4 Discussion

We have shown that the proposed spike train model allows one to independently
control firing rate and oscillation strength. Thus, the spike train model can
isolate reasonably well the two processes such that one can use it to calibrate
data analysis methods which need to separate the effects of the firing rate from
those of the oscillation strength [16].

Moreover, our results indicate that the model can reproduce the statistical
properties of the real data quite faithfully. The ACHs and the ISI distributions of
the model were strikingly similar to those of the real data and thus, we validated
the model as being appropriate for studying properties of spike trains in terms
of their ACHs. On the other hand, we have found that reproducing the statistics
of neuronal firing can not account for the dynamics of the spike trains. There
are multiple conclusions that stem from the above. First, given the complexity
required by our model in order to reproduce realistic spike trains, we infer that
simple, homogenous or inhomogeneous Poisson processes are crude and largely



inappropriate approximations of cortical firing. These two types of processes
need to be complemented by other, more complex ones, as real spike trains are
very hard to model. One needs to add many constraints to the model and these
constraints vary across neurons, stimuli, cortical states, and so forth. There is
no universal ’recipe’ for generating spike-trains, since neuronal behavior can be
very rich and highly variable.

Second, modeling the fine temporal structure of spike trains, including their
temporal dynamics can become very difficult because one needs to know the
underlying drive received by neurons from the sensory (thalamic) and cortical
inputs. An important implication of this fact is that collective coding strategies
(where multiple, simultaneous spike trains are analyzed) cannot be easily studied
with model spike trains. The reason is that, for collective codes, the relative
dynamics of different neurons plays a crucial role. Reproducing the statistical
properties of each individual spike train is obviously not enough. One could use
a hybrid approach and also measure some instantaneous firing probability over
time, but it is doubtful that the exact spike times can be accurately reproduced.
Some have been able to achieve accurate modeling of firing processes, but only
when the visual stimulus is known and mostly for early processing stages, such
as the retina or LGN [18].

Finally, we want to emphasize that it is always important to properly assess
the usefulness of a given spike train model. Models can prove useful for develop-
ing and calibrating data analysis methods [16], or for studying and quantifying
given properties of the data [18]. In general however, the spiking behavior of
neurons is both complex and variable. One needs to judge carefully which model
captures the interesting properties relevant for a given scientific question. Fur-
thermore, one has to be aware that, even if statistical properties of neuronal
firing are precisely reproduced, the exact spiking dynamics stem from the com-
plex interactions with other neurons and external stimuli. When one needs to
generate a spike train that is very close to the original, the best model for the
spike train is probably the spike train itself.

Appendix

To generate the data for Fig. 2 the following parameters were used: for fo(t),
τ = 0.5 ∗ 1, m = 0.5 and fo(t) was allowed to deviate from the target oscillation
frequency with at most 1 Hz; for fb(t), τ = 0.1, m = 3 and fb(t) was bounded
between 0 and 100 Hz. Note that τ is given relative to the period of the target
oscillation frequency. The oscillation strength, o, took values from 0.2 to 0.8 in
24 steps, SPPI was varied between 0.004 to 0.1 in 24 steps and the offset
was set to 0.5. To generate the artificial data presented in Fig. 3, some of the
parameters given above had to be adapted to each recorded spike train (trial)
that was modeled.
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