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present a method that estimates the strength of neuronal oscillations at
the cellular level, relying on autocorrelation histograms computed on
spike trains. The method delivers a number, termed oscillation score,
that estimates the degree to which a neuron is oscillating in a given
frequency band. Moreover, it can also reliably identify the oscillation
frequency and strength in the given band, independently of the
oscillation in other frequency bands, and thus it can handle superim-
posed oscillations on multiple scales (theta, alpha, beta, gamma, etc.).
The method is relatively simple and fast. It can cope with a low
number of spikes, converging exponentially fast with the number of
spikes, to a stable estimation of the oscillation strength. It thus lends
itself to the analysis of spike-sorted single-unit activity from electro-
physiological recordings. We show that the method performs well on
experimental data recorded from cat visual cortex and also compares
favorably to other methods. In addition, we provide a measure, termed
confidence score, that determines the stability of the oscillation score
estimate over trials.

I N T R O D U C T I O N

Neuronal oscillations are believed to play an important role
in brain function. They are expressed during both sleep
(Buzsáki 2006; Steriade 2006; Steriade et al. 1993) and awake
states (Canolty et al. 2006; Fries et al. 2001; Pesaran et al.
2002), and they can be organized into different frequency
bands (Buzsáki and Draghun 2004). Oscillations in each band
are likely to have a different underlying mechanism (Buzsáki
2006) and probably subserve a different function. Slow (0.5–1
Hz) and delta (1–4 Hz) oscillations typically engage large parts
of the thalamocortical system (Steriade et al. 1993), especially
during non-rapid eye movement (NREM) sleep (Steriade
2006). These oscillatory rhythms are known to correlate with
hyperpolarized cellular states (Timofeev et al. 2000) during which
neurons transiently engage in network bursting events (Mureşan
and Savin 2007). Theta-band activity (4–8 Hz) is expressed in
the hippocampus during locomotion or REM sleep (Maurer
and McNaughton 2007). Alpha-band activity (8–12 Hz) is
associated most commonly with the resting state but is also
frequently expressed during behavior (Gunji et al. 2007) and
various cognitive processes (Klimesch 1999; Klimesch et al.
2007), including meditation (Murata et al. 2004). Fast oscilla-
tions, with frequencies in the beta (12–30 Hz) and gamma

(30–80 Hz) ranges occur during awake states and REM sleep
(Steriade 2006) and, in contrast to the slow oscillations that
have a more global character (Steriade et al. 1993), these fast
oscillatory states are more often localized and shorter-lived
(Buzsáki 2006). Importantly, the fast oscillations in the beta
and gamma ranges have been shown to correlate with percep-
tion (Meador et al. 2002; Melloni et al. 2007; Rodriguez et al.
1999; Singer 1999; Tallon-Baudry et al. 1997; Vidal et al.
2006), behavioral performance (Tallon-Baudry et al. 2004),
working memory (Pesaran et al. 2002), visual attention (Fries
et al. 2001), motor preparation and execution (Schoffelen et al.
2005), and other cognitive processes (Lutz et al. 2004). It has
been suggested that the fast, stimulus-selective gamma oscil-
lations contribute to perceptual organization (Singer 1999),
coordination of neuronal activity (Fries et al. 2007; Martinovic
et al. 2007; Uhlhaas and Singer 2006), and also to the induction
and maintenance of stimulus-dependent synchronization (Engel
et al. 1990; Samonds and Bonds 2005). Such overwhelming
evidence—that neuronal oscillations evolve on various time-
scales, are expressed in virtually all cortical systems, and are
closely related to cognitive and executive functions—calls for
robust methods of investigating their expression in neuronal
activity.

Investigation of neuronal oscillations at the single-neuron
level is crucial for understanding how various rhythms emerge
from the interactions within large cell populations (Baker et al.
2003; Buzsáki et al. 2004). Nonetheless, estimating the degree
to which a neuron follows an oscillatory rhythm is not an easy
task, for several reasons. First, even when the neuronal popu-
lation oscillates, as revealed by local-field potential (LFP)
activity, single-cell activity frequently fails to reflect the un-
derlying rhythm because of undersampling (Baker et al. 2003;
Singer 1999). This problem can be confronted by computing
spike-field coherence measures (Fries et al. 2001; Pesaran et al.
2002; Zeitler et al. 2006). Second, the firing rates of cortical
neurons are relatively low (Graham and Field 2006) and thus
when these neurons follow fast oscillatory rhythms they often
skip oscillatory cycles. This usually leads to a reduced, often
too low, number of spikes for the estimation of the cell’s
oscillatory behavior. Therefore, most methods estimating os-
cillation strength work well only for neuronal activity with
high firing rates. Third, fast oscillations are often transient,
whether task dependent or spontaneously occurring (Buzsáki
2006; Fries et al. 2001; Melloni et al. 2007; Rodriguez et al.
1999; Steriade 2006). Their transient nature can be attributed to
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functional processes or to slower cortical state changes. Be-
cause of this nonstationary expression of oscillations, methods
that quantify oscillatory behavior should be applicable to short
stretches of activity. If too long traces of signals (too many or
too long trials) are analyzed the oscillatory episodes can be
averaged out. As a consequence, and because of the often low
firing rates of cortical neurons, analysis methods need to be
applied that yield reliable results despite the small number of
spikes. Finally, neurons can engage in multiple rhythms such
that they follow fast oscillations riding on top of slow ones
(Isomura et al. 2006; Steriade 2006). This can impose limita-
tions for methods that determine the oscillation frequency and
its amplitude by fitting an underlying model function, such as
a Gabor function (König 1994).

Several methods have been developed for the estimation of
oscillatory behavior from neuronal spike trains. Two main
categories can be defined: methods based on spectral analysis
of spike trains and methods based on computing auto- and
cross-correlation histograms. Among the methods in the first
category, probably the simplest one is the periodogram, which
directly applies a fast Fourier transform (FFT) on spike trains
that have been converted to sequences of zeros (no spike) and
ones (spike) (Bair et al. 1994). This method suffers from bias
and variance problems and is thus highly inaccurate (Jarvis and
Mitra 2001). A more efficient solution is achieved by applying
the FFT to spike trains that have been previously smoothed
(e.g., by using a Gaussian smoothing kernel) and then win-
dowed using specialized windows, like the Blackman window,
for example (Harris 1978). Another technique to compute the
spectrum of spike trains, described in Jarvis and Mitra (2001),
relies on the fact that the spectrum of a so-called spike-count
function (which integrates the spike counts up to a moment in
time) leads to the spike spectrum (Pesaran et al. 2002). In
addition, the method uses a family of smoothing functions, or
“tapers,” for windowing (Percival and Walden 1993). Thus it
belongs to the category of so-called multitaper techniques,
which apply this special type of windowing before computing
the spectrum. These methods are well understood analytically
(Jarvis and Mitra 2001) and have found a number of successful
applications (Mitra and Pesaran 1999; Pesaran et al. 2002).
Spectral techniques are relatively robust but they also have
many implicit assumptions, such as stationarity, for example.
Unlike methods based on correlation analysis, they are re-
stricted to frequency and phase coherence estimation and

cannot provide information on such properties as refractoriness
and burstiness, for example. Importantly, methods that esti-
mate the spectrum from spike trains do not directly quantify the
strength of oscillations. For that purpose, one could, for exam-
ple, use the ratio between the spectral magnitude of a particular
frequency of oscillation and the average magnitude of the
whole spectrum. As we subsequently see (see Comparison to
other methods), such a strategy is unfortunately biased by the
firing rates of neurons. In general, it is difficult to compute such
a measure that is independent of firing rate, directly from the
spectrum of the spike train.

The second, and perhaps most common, category of meth-
ods for characterizing the oscillatory behavior of neurons is
based on auto- and cross-correlation histograms. One com-
monly used method fits a generalized, eight-parameter Gabor
function, to the correlation histogram by an iterative Marquardt–
Levenberg algorithm. The fitted parameters of the Gabor func-
tion are used to determine not only the strength of synchroni-
zation between neurons but also the frequency and strength of
oscillation (König 1994). The strength of oscillation is esti-
mated as the ratio between the size of the first satellite peak and
the offset (Fig. 1A; König 1994). The method performs well on
correlograms that exhibit gamma oscillations (Brecht et al.
1999) and whose shapes match well the Gabor function, but
fails to converge when frequently the Gabor assumption is
violated. Moreover, it has been suggested that the presence and
strength of oscillations are often overestimated by methods
relying on the first satellite peak (Samonds and Bonds 2005).
Overestimation usually occurs when correlograms exhibit a
dip, near the central peak (due to the burst refractory period)
and a satellite peak (Fig. 1A), mimicking oscillatory activity.
Such cases can frequently appear, even in the total absence of
oscillations, when a central peak, with refractory dips, is
superimposed on a slow, correlated rate increase (Fig. 1, A and
B; Brody 1999). To overcome this problem, Samonds and
Bonds (2005) used normalized autocorrelation histograms
(ACHs) and suggested that one should rely on the difference
between the second satellite peak and second valley to quantify
the strength of oscillations (Fig. 1C). They also estimated the
(gamma) oscillation frequency by identifying a peak in the
FFT-computed spectrum of the ACH, between 20 and 60 Hz.
This method requires, in general, a relatively large amount of
data (Samonds and Bonds used responses to 516 stimulus
presentations, each with a duration of 2 s) and is limited when

A B C

FIG. 1. Schematic autocorrelograms. A: a typical autocorrelation histogram (ACH) with a strong satellite peak (not due to oscillations) and deep troughs,
reflecting burst refractoriness. The size of the satellite peak is denoted by sp, whereas the offset (baseline) of the ACH is symbolized by ofs. B: false satellite
peaks (bottom) can be induced in ACHs when, on a slower rate increase (top), a refractory ACH is superimposed (middle). C: quantification of the strength of
oscillations relying on the difference between the second valley and second satellite peak in a normalized ACH.
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smaller amounts of data are analyzed. If only 20 stimulus
presentations are given, as is common, the ACH is often noisy
and the reliable estimation of the second satellite peak and
second valley is no longer feasible. Moreover, oscillation
frequencies are often not stationary in time such that recording
a large number of trials might actually blur the oscillatory
modulation of the ACH. Also, as we shall subsequently see, the
difference between the secondary peak and secondary valley
critically depends on the firing rate of the neuron, such that the
measure does not properly quantify the oscillation strength.
Another important problem is the presence of the large center
peak in the ACH. Due to its narrow width and frequently
associated refractory dips, it introduces a strong bias toward
detecting fast oscillation frequencies in the FFT-computed
spectrum of the ACH (see Fig. 3, A and B in Computation of
the oscillation score). For a thorough discussion on the
strengths and weaknesses of these methods, see Comparison to
other methods in RESULTS.

Here, we propose a novel method for estimating the strength
of oscillations that relies on ACHs. The method combines the
advantages of both spectral methods and correlogram-based
techniques because it relies on the estimation of the frequency
spectrum from ACHs. It is simple, fast, and works well with
noisy ACHs. Thus it can be used when the number of available
experimental trials is small and even with single units. The
method first uses a fast Gaussian kernel to smooth the ACH
and to remove high-frequency noise. Then, a slow Gaussian
kernel is applied, for the sole purpose of detecting the bound-
aries of the central peak. Using this information, the central
peak is efficiently removed from the buffer containing the fast
smoothing, which is then subjected to FFT. Eventually, the
oscillation score is computed as the ratio between the highest-
frequency magnitude within the band of interest and the base-
line (average) magnitude of the spectrum. The method is robust
against noisy ACHs, it minimizes the false detection of oscil-
lations, and allows one to quantify the strength of oscillations
in any frequency band (e.g., theta, alpha, beta, gamma). We
also propose a measure to estimate the degree of confidence
with which the oscillation score can be computed from a
given ACH.

M E T H O D S

Experimental procedures, stimulation, and recording

The experiments were performed in the visual cortex of lightly
anesthetized, paralyzed cats (n � 4). Anesthesia was induced with
ketamine [Ketanest, Parke-Davis, 10 mg �kg�1, administered intra-
muscularly (im)] and xylazine (Rompun, Bayer, 2 mg �kg�1, im) and
maintained with a mixture of 70% N2O and 30% O2 supplemented
with halothane (0.5–1.0%). After tracheotomy, the animals were
placed in a stereotactic frame. A craniotomy was performed and the
skull was cemented to a metal rod. After completion of all surgical
procedures, the ear and eye bars were removed, and the halothane
level was reduced to 0.4–0.6%. After ensuring that the level of
anesthesia was stable and sufficiently deep to prevent any vegetative
reactions to somatic stimulation, the animals were paralyzed with
pancuronium bromide (Pancuronium, Organon, 0.15 mg �kg�1 �h�1).
Glucose and electrolytes were supplemented intravenously and
through a gastric catheter. The end-tidal CO2 and rectal temperature
were kept in the range of 3–4% and 37–38°C, respectively.

Visual stimuli were presented binocularly on a 21-in. computer
screen (Hitachi CM813ET) with 100-Hz refresh rate. To obtain

binocular fusion, the optical axes of the two eyes were first determined
by mapping the borders of the respective receptive fields and then
aligned on the computer screen with adjustable prisms placed in front
of one eye. The software for visual stimulation was a combination of
custom-made programs and a stimulation tool, ActiveSTIM (http://
www.ActiveSTIM.com).

The investigated neuronal activity was acquired in response to a
variety of visual stimuli: 1) Sinusoidal gratings moving in 12 direc-
tions in steps of 30°. 2) Center–surround stimuli, with a small
sinusoidal grating placed in the center and a larger one in the
surround. The orientations of both gratings and the sizes of the
surround gratings were varied, resulting in a total of 14 stimulation
conditions. 3) Moving bars and gratings with rectangular changes in
luminance: including single bars, two superimposed bars moving in
different directions, single gratings, and two overlapping gratings
(plaids). This yielded a total of eight stimulation conditions. 4)
Natural movies recorded for 28 s, containing indoor and outdoor
moving scenes. Three different movies with different image statistics
(slow, fast moving, dark, light, etc.) were presented. In each experi-
ment, responses were recorded for 20 stimulus presentations. Differ-
ent stimulus conditions were always presented in a randomized order.

Data were recorded from area 17 of four adult cats by inserting
multiple silicon-based multielectrode probes (16 channels per elec-
trode) supplied by the Center for Neural Communication Technology
at the University of Michigan (Michigan probes). Each probe con-
sisted of four 3-mm-long shanks that were separated by 200 �m and
contained four electrode contacts each (area 1,250 �m2, impedance
0.3–0.5 M� at 1,000 Hz, intercontact distance 200 �m). Signals were
amplified �10,000 and filtered between 500 Hz and 3.5 kHz and
between 1 and 100 Hz for extracting multiunit (MU) activity and
local-field potentials (LFPs), respectively. The waveforms of detected
spikes were recorded for a duration of 1.2 ms, which allowed the later
application of off line spike-sorting techniques to extract single units
(SUs). In the analysis we considered only data recorded between the
onset and the offset of stimulation. Unless specified otherwise, the
reported analyses were made on SUs.

Computation of the oscillation score

The proposed method uses the following five steps to estimate the
oscillation strength from an ACH: 1) the ACH is computed, 2) then it
is smoothed, 3) the central peak is removed, 4) an FFT is applied to
compute the spectrum of the peakless ACH, and 5) the oscillation
score is calculated. The analysis is always made for a chosen fre-
quency band, whereby the two input variables, fmin and fmax, repre-
sent, respectively, the low and high border of the frequency band of
interest.

STEP 1: COMPUTATION OF THE AUTOCORRELATION HISTOGRAM

(ACH). The first step of the analysis involves computation of the
ACH. The parameter that has to be determined is the time window of
the ACH (the maximum lag or maximum time shift; e.g., 80 ms in
Biederlack et al. 2006). Let b be the bin size used to compute the ACH
(10�3 s in our study) and fc the frequency of the correlogram, given
by fc � 1/b (1,000 Hz in this study; note that fc can be different from
the sampling frequency of the spikes, depending on how one chooses
to bin the ACH). Let w be the size, in bins, of one flank of the ACH
and W the length, in bins, of the total ACH (given by W � 2w; the full
symmetric ACH including the center bin at lag 0 has 2w � 1 bins).
For computational reasons (see following text), W has to be a number
power of 2, so the last bin of the ACH (the �w bin) is always left out
of the analysis (Fig. 2A). The choice of w is made according to the
following three criteria: 1) w � b should be sufficiently large to fit at
least a few cycles of the slowest frequency of interest, fmin. We
required at least three cycles on each flank of the ACH (three-peaks
rule), which, e.g., for fmin � 20 Hz (50-ms period) and b � 1 ms
required w � 150 bins. 2) W should be sufficiently long to allow for
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a good resolution of the frequency spectrum obtained by the FFT. We
always required �2 Hz per bin of the magnitude spectrum, which
equaled to at least W � 500 bins for ACHs with b � 1 ms. 3) To
enable the computationally efficient application of the FFT, W should
be a power of 2. The three criteria for the selection of w can be
expressed as

w � 2  max�log2�3ƒc /ƒmin�,log2�ƒc /4�	 �1 (1)

where   represents the rounding function to the nearest smaller
integer (or floor function).

For example, consider an interval of frequencies in the beta-/
gamma-band ( fmin � 20 Hz; fmax � 40 Hz) and a bin b � 1 ms ( fc �
1 kHz). The minimum w according to the three-peaks rule should be
150 bins, whereas according to the criterion of having a minimum
FFT precision of 2 Hz per bin, it should be 250 ms (W � 500 ms). The
formula in Eq. 1 takes the maximum closest estimate that is a power
of 2. It follows that the ACH should be computed using time lags from
�256 to �256 ms (w � 256 ms). The algorithm will use the bins from
�256 to �255, that is, W � 512 bins to compute the FFT in step 4.

STEP 2: SMOOTHING. When computing ACHs on spiking data with
single units and on a low number of trials, the autocorrelation
histogram is often noisy (because of the low number of spikes used to
estimate it). Since we seek to minimize the effect of noise and
approximate the real frequency spectrum as well as possible, an option
is to apply a Gaussian smoothing with a fast kernel, to increase the
signal-to-noise ratio. This would interfere only with very high fre-
quencies (usually noise) and leave the lower, biologically relevant
frequencies intact. The classical Gaussian kernel G(t) is given by

G�t� �
1

��2�
e��t2/2�2� (2)

where � is the SD of the Gaussian kernel.
An example ACH smoothed by such a Gaussian kernel is shown in

Fig. 2B. The relevant parameter that has to be determined is �fast (for
the fast smoothing kernel). Since the smoothing is essentially a
low-pass filter, it is important to choose �fast such that the highest
frequencies of interest are not attenuated below an acceptable thresh-
old (e.g., �3 dB). For a correlogram frequency fc � 1 kHz, choosing
�fast � 2 ms leads to attenuations stronger than �3 dB for frequencies

67 Hz, whereas for �fast � 1 ms the same effect is achieved for
frequencies 
134 Hz (Fig. 2C). In our method, we impose on �fast an
upper bound of 2 ms (to allow for the later estimation of noise in the
ACH; see Estimation of the oscillation score’s confidence). On the
other hand, �fast is allowed to take smaller values, depending on fmax.
For better precision of the smoothing, the cutoff frequency (attenuated

by the smoothing with �3 dB) is chosen at 1.5 � fmax. Thus �fast is
given by (in bins)

�fast � min �2,
134

1.5ƒmax
� ƒc

1,000
(3)

For example, for a correlogram frequency fc � 1,000 Hz and a
maximum frequency of interest fmax � 100 Hz, the smoothing should
be made with a Gaussian kernel having �fast � 0.893 bin. Note that
the factor of 1.5 for computing the cutoff frequency has been empir-
ically chosen.

STEP 3: REMOVING THE CENTRAL PEAK OF THE ACH. The most
important step of the method is the removal of the central peak from
the ACH. The point of the maximum height of the central peak (at lag
0) indicates solely the firing rate of the neuron, which is uninteresting
information for the present analyses. When computed for a spike train
of a single neuron, the width of the central peak can reflect either the
degree to which the neuron exhibits bursting behavior, in which case
the peak is narrow corresponding to the average burst length (DeBusk
et al. 1997), or it can reflect slow changes in firing rate (Brody 1999)
and/or slow oscillatory activity, in which case the peak will be much
wider. For cells that often produce fast bursts of action potentials, the
central peak is frequently flanked by deep troughs, the duration of
which indicates the refractory period for the appearance of repeated
bursting events (Gray and McCormick 1996). These troughs can also
be produced by inhibitory postsynaptic potentials during an ongoing
oscillation, and the distinction from refractoriness is often impossible.
Importantly, even in the absence of oscillations, the troughs can be
followed by “rebound” satellite peaks (Fig. 1A) that can produce a
false impression of oscillatory activity (Samonds and Bonds 2005).
This can be a problem for any analysis method that is not designed to
distinguish between different types of satellite peaks. See Fig. 1, A and
B for an illustration of how such a misleading ACH can be produced
by a combination of slow changes in rate responses and the troughs of
burst refractoriness. Here, a method relying on the estimation of
satellite peaks, such as the one described in König (1994), might
falsely report the presence of strong oscillations (Fig. 1A).

Since our method relies on the identification of the frequency with
the highest magnitude in the band of interest (see step 5), the central
peak of the ACH can heavily interfere with the correct estimation. The
central peak introduces a very high power that contaminates the whole
spectrum (Fig. 3, A and B). Moreover, in conjunction with its side
troughs (that frequently occur due to burst refractoriness) it can
introduce peaks in the frequency spectrum of the ACH (Fig. 3B),
falsely indicating the presence of oscillations. This could impair
methods that quantify the frequency of oscillations relying on the
frequency spectrum of the ACH, such as the one developed by

A B C

FIG. 2. Parameters of the ACH and fast smoothing. A: parameters of the ACH. The size of one flank of the ACH is denoted by w; the total signal taken into
analysis spans W � 2 � w bins of size b. W does not include the rightmost bin of the ACH. B: a typical ACH smoothed with a fast Gaussian kernel (gray line
superimposed on the histogram). C: attenuation curves for different Gaussian smoothing procedures. The curves were derived by simulation, using sinusoidal
signals and fast Gaussian smoothing kernels with SDs of 1 and 2 ms. The attenuation threshold at �3 dB and the corresponding frequencies (67 and 134 Hz)
are indicated. Data-set codes, unit codes, and experimental conditions are indicated on top. SU, single unit.
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A B C

D E F

G H I

J K

FIG. 3. Removal of the central ACH peak. A: an ACH exhibiting deep refractory troughs and elevated satellite peaks, but without oscillations. The ACH is
smoothed with a fast kernel (gray thick line) and then the central peak and troughs are removed from the smooth ACH (thick black line). B: the frequency spectra
of the smoothed ACHs in A. C: the ideal peak removal procedure (top and middle). For oscillations, only the central peak should be removed (top); for no
oscillations the side troughs should be filled up in addition (middle). When only the central peak is removed, a low-frequency component is introduced into the
frequency spectrum (bottom). D: typical peak removal by using the slow-smoothed ACH (dotted black line). The algorithm identifies the curvature threshold of
10° in the slow-smoothed ACH (inset). It then removes the peak in the fast-smoothed ACH (thick gray line) by overwriting it with the value at index tleft (inset,
black line on the bottom). E: the removal of the central peak of the ACH in D induces a low-frequency component of 14 Hz. The smoothed, peakless ACH, which
is subjected to fast Fourier transform (FFT), is represented by a thick black line. F: the frequency spectra of the fast-smoothed ACH with the peak intact in D
(gray) and of the fast-smoothed ACH without peak in E (black). The method inspects frequencies only between fmin and fmax and identifies fosc at 29 Hz (peak
magnitude). The 14 Hz, artificially introduced by peak removal, is indicated by the arrow. G: peak removal with filling up of side troughs as well. H: wide peak
removal, including the satellite peaks that are due to a slow rate increase. I: perfect cut removing only the central peak for a cell that does not exhibit refractory
troughs. J: distribution of oscillation scores in the beta-high band computed after removing the central peak of the ACH. K: distribution of oscillation scores
in the beta-high band computed with the central peak of the ACH intact. Data-set codes, unit codes, and experimental conditions are indicated on top. SU, single
unit; MU, multiunit.
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Samonds and Bonds (2005), because it induces a false estimate for the
oscillation frequency.

Removal of the central peak of the ACH is not a straightforward
procedure. Ideally, when oscillations are present in the ACH, the
central peak should be cut at the bottom of the side troughs, which
preserves the satellite peaks that reflect oscillatory activity (Fig. 3C,
top). In contrast, when oscillations are not present, but instead the cell
displays deep refractory troughs, false peaks in the frequency spec-
trum should be avoided and thus the central peak should be removed
together with the troughs; i.e., the troughs should be “filled up” (Fig.
3C, middle). Unfortunately, there is no exact method for deciding
whether the satellite peaks represent oscillations. It is important to
mention that, even for strong oscillations, if they are transient and
nonstationary, the ACH will not reflect a clear oscillatory behavior,
such that only one satellite peak might be expressed. The best
approach, then, would be to consider a method that can cope with a
low number of experimental trials, avoiding the problem of nonsta-
tionary oscillation frequencies and that estimates the oscillation
strength and frequency by considering several cycles that are ex-
pressed in the ACH. The oscillation score aims to do exactly that.

Removal of the central peak, however, can cause other problems. A
low-frequency component could be artificially introduced (Fig. 3C,
bottom) when the side troughs are not filled up, either because satellite
peaks needed to be preserved for the oscillatory case or because the
cut was too small for the nonoscillatory case. This can then lead to a
false indication of low-frequency oscillations in the frequency spec-
trum of the ACH; thus it is important to treat this case properly by
selectively looking only into frequency bands higher than the artifi-
cially introduced frequency.

A reasonable solution for removal of the central peak is achieved if
we consider that the method investigates only a given frequency band
at a time (see step 5). For example, if the artificially introduced low
frequency (due to removal of the central peak) is lower than the lowest
frequency of interest fmin, then the algorithm would not detect false
slow oscillations (because in step 5, it looks only in the band fmin �
fmax). The problem of removing the central peak can be formulated in
terms of finding the bins of the ACH that represent the limits between
which the cut should be made. To detect the cutting limits for the
central peak, we first apply a slow Gaussian smoothing on the original
ACH, similar to the one in step 2, but with a much larger SD �slow,
taking into consideration fmin

�slow � 2
134

1.5ƒmin

ƒc

1,000
(4)

For example, for a correlogram frequency of 1 kHz, and a fre-
quency band in the beta / gamma range ( fmin � 20 Hz, fmax � 40 Hz),
the ACH will be smoothed with a Gaussian having �slow � 8.93 ms.
This would create a smoothed central peak (Fig. 3D) with an effective
width of �6 � �slow (�50 ms). Note that the constants in Eq. 4 were
determined empirically, to achieve a reasonable compromise of cut-
ting efficiency for ACHs with and without oscillations, in the gamma
band. For lower-frequency bands (e.g., alpha), the decision on the
point for cutting the central peak is less critical because there is less
confound between the burst refractory period (�30 ms) and the
slower oscillation periods (
30–40 ms).

After smoothing the ACH with the slow Gaussian kernel, we obtain
a “slow-smoothed” ACH (Fig. 3D, thick dotted black line). Then, we
need to detect the limits of the smoothed central peak. This can be
achieved accurately by applying an iterative search procedure that
identifies the curvature of the smoothed signal (Fig. 3D, inset). It starts
at lag 0 (top of the central peak) and searches to the left (negative time
lags because the ACH is symmetric) a point on the curve where the
slope of the local tangent is lower than a given threshold. The local
slope is given by

slope�t� � lim
�30

Sslow�t � �� � Sslow�t�

�
scaling (5)

where slope(t) is the slope of the slow-smoothed ACH at lag t (lag 0
corresponds to the central peak), Sslow represents the ACH smoothed
with the slow Gaussian kernel, � is an infinitesimally small quantity,
and scaling is used to adjust the scale of the ACH on the y-axis in
units of x-axis: scaling � W/Sslow(0) (the adjustment eliminates the
dependence of the slope on the firing rate of the neuron).

The formula in Eq. 5 simply represents the first-order derivative of
the curve at point t. For detecting the limits of the central peak, we
imposed a limit of 10° on the local slope of the slow-smoothed ACH

tleft � t � slope�t� 	 tan �� � 10

180
� (6)

where tleft is the time lag (on the left of the central peak) where the
slope of the slow-smoothed ACH is 	10° (Fig. 3D, inset).

The slow-smoothed ACH is used only to detect the limits for the
cutting of the central peak. After detecting the limits (ACH bins) tleft

and tright of the central slow-smoothed peak (Fig. 3D, inset), we go
back to the original, fast-smoothed ACH (that was computed in step
2). In the latter, the ACH value at tleft is copied to all other time lags
spanning the identified range (tleft. . .tright), thus overwriting the real
central peak (Fig. 3E). Depending on the relative size of the side
troughs and first satellite peak, and on fmin, this procedure can also fill
up the side troughs (see examples in Fig. 3, G and H).

The advantage of using the slow-smoothed ACH (Sslow) for detect-
ing the central peak is that, after the cutting procedure, it avoids
introducing low-frequency components in the spectrum within the
band of interest. Due to the time constant of the slow smoothing, the
introduced frequency is smaller than fmin (Fig. 3F). Moreover, when
the ACH displays strong oscillatory components, the slope of the slow
Sslow will reach the threshold of 10° closer to lag 0 (due to the deep
first troughs and high satellite peaks), thus preserving the legitimate
satellite peaks (Fig. 3, D and E). When the ACH displays only troughs
due to refractoriness, with relatively weak satellite peaks, Sslow will
reach the slope threshold later (further away from the central peak),
leading to an efficient removal of the central peak (Fig. 3I), and
frequently of the refractory troughs as well (Fig. 3, G and H).

It is important to mention that, in addition to slow components,
removal of the central peak (a highly nonlinear operation) might also
introduce some nonlinear distortions in the spectrum. However, our
experience showed that these distortions are negligible and do not
affect the reliable estimations of the oscillation frequency and
strength.

STEP 4: APPLYING THE FFT. The frequency spectrum is computed on
the fast-smoothed ACH (obtained in step 2) with the central peak (and
sometimes also side troughs) removed in step 3. We consider the
smooth ACH in the interval [�w. . .�w � 1] (a buffer having a size
that is a power of 2; see Fig. 2A) and we apply an FFT. The resulting
buffer is of size w and contains the magnitudes of the frequencies
from 0 to fc /2 Hz. When applying the FFT, it is very important to
minimize frequency leakage (Oppenheim and Schafer 1999) to in-
crease the precision of the frequency estimate. We recommend ap-
plying a Blackman window (Harris 1978) on the smoothed ACH
before computing the FFT, to minimize leakage and border effects.
Because the multitaper method is just another windowing technique
(Percival and Walden 1993), it can also be applied instead of the
Blackman window.

It is worth noting that because of the smoothing (that attenuates
very high frequencies) and because of the distribution of biological
frequencies in the ACH, very high frequencies, 
200 Hz, have
extremely low magnitudes (Fig. 3B).
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STEP 5: ESTIMATION OF THE OSCILLATION SCORE. We defined the
oscillation score as the ratio between the peak magnitude in the
frequency band of interest and the mean magnitude of the spectrum.
Intuitively, the score can be understood as the strength of the oscil-
lation frequency relative to all the frequencies in the spectrum. The
computation of the oscillation score has three components. First,
the highest magnitude in the band of interest, Mpeak, is identified from
the power spectrum (Fig. 3F). The estimated oscillation frequency fosc

is the frequency with magnitude Mpeak. It is important to note that the
method searches for the peak magnitude only within the band of
interest fmin � fmax. Recall that this is an essential aspect because
removal of the central peak in step 3 can artificially introduce
frequencies lower than fmin (Fig. 3, E and F). By looking only to
frequencies larger than fmin, the method is safe from detecting spuri-
ous, artificial magnitude peaks.

Next, the average magnitude Mavg of the spectrum is computed by
integrating the whole frequency spectrum and taking its average

Mavg �

�
0

ƒc /2

Magnitude�ƒ�dƒ

ƒc /2
(7)

where Magnitude( f ) is the estimated magnitude of frequency f in the
FFT-computed spectrum.

The average magnitude of the spectrum is reduced by removal of
the central peak from the ACH. This is highly beneficial since the
legitimate oscillation peaks in the spectrum will have a higher ratio to
the baseline.

The oscillation score OS is then given by

OS �
Mpeak

Mavg

(8)

Finally, the estimated frequency of oscillation, fosc (Fig. 3F) is
given by the frequency having the highest magnitude Mpeak in the
band of interest. The strength of the oscillation is given by the
oscillation score OS. We have to mention that the oscillation score
measure is dimensionless because it represents the ratio of two
quantities having the same units of measurement.

To illustrate that removal of the central peak of the ACH is useful,
we computed the oscillation score for a data set recorded from cat
visual cortex, containing 86 simultaneously recorded multi- and single
units (after spike sorting). The data set exhibited strong oscillations in
the beta-high band (27–30 Hz) for some experimental conditions/cells
and nonoscillatory behavior for the others. We expected a bimodal
distribution of oscillation scores. Indeed the oscillation score distri-
bution was bimodal when the central peak of the ACH was removed
(Fig. 3J), reflecting the weak/nonoscillatory versus strong oscillatory
conditions. However, when the central peak of the ACH was kept
intact, the ability to discriminate between the two conditions was lost
(Fig. 3K). This effect is due to the previously described estimation
problems that are introduced by the central peak of the ACH and
justifies the operation of removing the peak.

Estimation of the oscillation score’s confidence

A relatively low number of spikes is frequently encountered in
practice (Graham and Field 2006) and thus the ACH becomes noisy
and can produce the false impression of oscillations (see example in
Fig. 7A). A few random peaks in the ACH might appear as an
oscillatory process and produce a magnitude peak in the frequency
spectrum. Moreover, if the number of spikes is very low, the baseline
magnitude, Mavg, of the ACH spectrum is also low. This would boost
the oscillation score to erroneously high values (see Eq. 8). Thus a
method for estimating the confidence (reliability) of the oscillation
score is needed.

We used two measures to quantify the degree of confidence of the
oscillation score. Let us assume that there are N available trials (when
only one trial is available, the confidence cannot be estimated). We
can then estimate the SD of the oscillation scores, computed on
individual trials i, by

�OSt
� � 1

N � 1
�
i�1

N

�OSi � O� St�
2 (9)

where �OSt
is the estimate of SD for the oscillation score computed on

individual trials, OSi is the oscillation score computed on trial i, and
O� St is the average over OSi.

When the trials contain sufficient spikes and the oscillation is
stimulation-stationary (equally expressed in all trials), then the esti-
mated SD will be small. A possibility of directly quantifying how
confidently the oscillation score represents the real oscillation score is
by computing the coefficient of variation Cv, defined as

Cv �
�OSt

O� St

(10)

The Cv estimates the ratio between the SD and the mean, and thus it
is an unbounded measure. To get a measure between 0 (no confidence)
and 1 (high confidence) we defined a measure that we called confi-
dence score (CS) as

CS �
1

1 � Cv

(11)

For small values of the SD relative to the mean, the CS gives a value
close to 1, whereas for very poor data, with highly fluctuating
oscillation scores on individual trials, the CS approaches 0. Only
oscillation scores having a high confidence score should be considered
as meaningful and given physiological interpretation. The confidence
score is not to be confused with the statistical concept of confidence
intervals. The confidence score cannot be used for significance testing
because it provides only a bounded measure of how much the scores
vary across individual trials. A high confidence score means that
variability over trials is low, whereas a low confidence score means
that variability is high. Thus the confidence score is a measure of
stability of the oscillation score over individual trials.

Here we emphasize another important aspect. When the SD of the
oscillation score is computed (Eq. 9), the individual oscillation scores
are independently computed for each trial. This means that for each
trial, a different frequency, fosc, with the peak magnitude within the
band of interest (Fig. 3F), can be selected by the method. If the
oscillation strength is constant but the oscillation frequency is drifting
over trials, then the final oscillation score will be relatively low
(because averaging the ACHs with different oscillation frequencies
would smear out the oscillations). However, the confidence score will
nevertheless be high (because the oscillation score was stable across
individual trials). This is a consistent interpretation but it reflects only
the fact that the mean oscillation frequency in the average ACH is
imprecisely expressed over individual trials. To cope with such
situations, one can alternatively compute a frequency confidence score
by replacing in Eqs. 9 and 10 the oscillation score with the oscillation
frequency. This new measure would reflect the stability of the oscil-
lation frequency over trials. In the experimental data that we have
analyzed here, the oscillation frequency was very stable across indi-
vidual trials. In general, however, especially in data recorded from
behavioral experiments, the oscillation frequency might change as a
function of the behavioral task. In such cases, one must choose
periods (or define trials appropriately) where the oscillation frequency
remains relatively stable. Importantly, nonstationary oscillation fre-
quencies are a general problem and affect most of the present methods
for estimating oscillation strength.
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Simulated spike trains

When estimating the range of oscillation scores for different fre-
quency bands, we needed to have an objective estimate of the real
oscillation strength in the spiking data. To this end, in addition to
using recorded data from cat visual cortex, we devised an algorithm
that was capable of producing realistic spike trains and realistic-like
ACHs. To produce spikes, the algorithm uses an oscillatory discharge
probability function that is obtained from mixing two components
(one oscillatory and one background process) whose frequencies are
continuously modulated by slower processes. The slow processes
randomly diverge around the desired oscillation frequency, within a
given limit (between a low and high boundary for the frequency), and
have a given amount of memory (dependence on their past). By
controlling the amount of memory and the frequency boundaries, one
can obtain spike trains that oscillate more or less precisely at the
frequency of interest. The oscillatory component’s frequency is mod-
ulated by a relatively stable slow process with strong dependence on
its past and precisely bounded in a narrow frequency band (e.g., 23–27
Hz). The background component’s frequency is modulated by a
highly unstable slow process with low dependence on its past and
bounded only to a wide frequency range (e.g., 0–100 Hz). The mixing
of the two components allows one to control the amount of oscilla-
tions independently of the firing rate of the generated spike train. The
firing rate is controlled, independently of the amount of oscillations,
by modulating the integral under the final oscillatory probability
discharge function. In addition, we introduced realistic values (deter-
mined on recorded spiking data) for refractory periods, probability of
bursting, interspike intervals, and intraburst interspike intervals. We
obtained quite realistic ACHs, well resembling the ACHs computed
on recorded data (Fig. A1, F and G). For details on how the artificial
spike trains are produced, see the APPENDIX.

Spike-field coherence measure

To characterize the degree of synchrony between LFP and spike
trains we used the spike-field coherence (SFC) measure (Fries et al.
2001). To compute the SFC, first, the spike-triggered average (STA)
is obtained by averaging LFP segments around each spike and,
second, the power spectrum of the STA is normalized to the average
power spectrum of the LFP segments used to compute the STA. The
resulting measure is independent of the number of spikes and of the
LFP power. We also used a second method to quantify SFC, based on
multitaper spectral estimates (Pesaran et al. 2002). The coherence is
computed by normalizing the cross-spectrum to the product of indi-
vidual autospectra (computed on the spike train and LFP, respec-
tively). Note that power is used instead of magnitude spectra.

R E S U L T S

We investigated the performance of the described method on
neuronal spike trains, both recorded from cat visual cortex, and
simulated. We first estimated the ability of the method to
quantify the strength of oscillations in different frequency
bands. Then, we worked out the proper interpretation of the
oscillation score, which depended on the investigated fre-
quency band. Furthermore, we studied how the oscillation
score correlated with the oscillation of local-field potentials
(LFPs) when the spike-field coherence was high, thus validat-
ing the oscillation score as a meaningful measure. Finally, we
investigated how the confidence of the score related to the
stationary expression of neuronal oscillations in different ex-
perimental trials and also how it correlated to the number of
available spikes.

Applying the oscillation score on spiking data

We have applied the oscillation score measure on spiking
data recorded from cat visual cortex. Most of the analyses have
been performed on spike-sorted single-unit activity that is
characterized by much lower firing rates compared with those
of multiunit activity. The analyzed database contained a large
number of individual units (n � 416) that were activated with
various visual stimuli, ranging from drifting sinusoidal gratings
and moving bars, to plaids and movies with natural scenes. We
could reliably identify cells oscillating in the theta band (4–8
Hz), alpha band (8–12 Hz), and beta/gamma bands (25–33
Hz). Examples of ACHs, together with their smoothed, peak-
less versions, and their frequency spectra are shown in Fig. 4.

Our method investigates a given frequency range, defined by
the boundary limits fmin and fmax. We strongly recommend that
the choice for the boundary frequencies closely matches the
boundaries of relevant biological bands (theta, alpha, beta,
gamma), for the following reason: To safely remove the central
peak, without contaminating the frequency spectrum in the
band of interest, the method uses a smoothing procedure that is
slower than the period of the slowest frequency of interest, fmin
(see Eq. 4). If fmin �� fmax, and if the ACH exhibits robust
high-frequency oscillations, then the algorithm for removing
the central peak (see METHODS, Computation of the oscillation
score, step 3) might also remove legitimate satellite peaks
(because it tries to cut a portion around the central peak that is
larger than the period of fmin). For example, choosing fmin � 5
Hz and fmax � 100 Hz determines an effective cut around the
central peak of �100 to �100 ms, thus removing satellite
peaks (�50 ms) for potential beta and gamma oscillations. Had
the frequency boundaries been chosen properly, spanning only
one biological band (theta), fmin � 5 Hz and fmax � 8 Hz, the
cutting would not have interfered with the highest possible
frequency in the band: 8 Hz (which has a period of oscillation
of 125 ms 
 100 ms). We have determined that for each
biological band, the method safely removes the central peak,
without interfering with legitimate satellite peaks of the oscil-
lations in the given band. We next defined oscillation scores for
each specific band—theta, alpha, beta, and gamma—and
named the scores accordingly: 1) theta score, 2) alpha score, 3)
beta score, and 4) gamma score, respectively.

THE THETA SCORE. The theta score is defined for the theta
oscillation band (Maurer and McNaughton 2007), with fmin �
4 Hz and fmax � 8 Hz. In Fig. 4A, a recording site (multiunit),
stimulated with a moving bar, showed robust oscillations in the
theta range, with fosc � 5 Hz (Fig. 4A, bottom). Note the high
magnitude of the theta oscillation in the frequency spectrum,
relative to the baseline magnitude (Fig. 4A, bottom, inset),
inducing a very high theta score of 60.7 (Fig. 4A, bottom). Also
note that removal of the central peak of the ACH (Fig. 4A, top)
introduces an artificial frequency of 2 Hz (Fig. 4A, bottom,
inset), which is lower than the inferior boundary of the theta
range, thus not affecting the oscillation score.

THE ALPHA SCORE. According to Klimesch et al. (2007), we
defined the alpha score as spanning frequencies between fmin � 8
Hz and fmax � 12 Hz. In Fig. 4B, we identified a single unit that
had a low spike rate but exhibited alpha oscillations with a
frequency of 9 Hz, yielding an alpha score of 28.8 (Fig. 4B,
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bottom). Note that the score is smaller than the previously
shown theta score.

THE BETA SCORE. We defined the beta score corresponding to
the beta frequency band (12–30 Hz). However, because of the
fuzzy, often overlapping border between the beta and gamma
bands, we recommend that the beta range be split into two
different subbands: beta-low (12–20 Hz) and beta-high (20–30
Hz). The literature reports are often ambiguous on the defini-
tion of borders between beta and gamma oscillations. In some
reports, frequencies 
20 Hz are addressed as gamma (Whit-
tington et al. 1997), whereas in others, the range between 20
and 30 Hz is classified as beta2, and the range 
30 Hz as
gamma (Roopun et al. 2006). Because of our procedure of
cutting the central ACH peak, we strongly recommend that
beta-low and beta-high (beta2) bands be treated separately.
Therefore we defined a beta-low score (with fmin � 12 Hz and
fmax � 20 Hz) and a beta-high score (with fmin � 20 Hz and
fmax � 30 Hz), as two separate measures for the beta range.

In Fig. 4C we identified a single unit that exhibits very
strong oscillations in the beta-high frequency range (27 Hz).
Note that although the oscillation is strong (Fig. 4C, top), the
beta-high score reaches a value of only 19.1 (Fig. 4C, bottom),
which is much lower than the observed theta and alpha scores.

THE GAMMA SCORE. For the gamma-band oscillations, we de-
fined a gamma score in the frequency range of 30–80 Hz. As
mentioned earlier, the gamma band activity has a fuzzy border
with the beta-high band. Our experience has shown that the
beta-high range (20–30 Hz) can be safely merged with the
gamma-low band (30–50 Hz) when setting the limits fmin and
fmax. Removal of the central peak will not affect frequencies

between 20 and 50 Hz, if fmin is set to 20 Hz. Moreover, high
oscillation frequencies (50 – 80 Hz) should probably be
isolated from lower gamma frequencies. We recommend
that one investigates these two bands (30 –50 and 50 – 80
Hz) separately.

Interpretation of the oscillation score

The oscillation score represents the ratio between the mag-
nitude of the oscillation frequency and the average magnitude
of the spectrum. As we have previously seen, the actual
oscillation score depends very much on the frequency band of
interest, with low-frequency bands assuming larger scores than
high-frequency bands. Indeed, it was previously reported that
slow-frequency oscillations normally have a higher power than
that of high-frequency ones (Freeman et al. 2000). This is
partly due to the fact that slow oscillations tend to engage
larger populations of neurons and persist for longer periods of
time, compared with the fast, transient oscillations. It is very
likely that this phenomenon is related to conduction delays
(Buzsáki 2006). These tend to impair the spread of fast oscil-
lations, but not of the slow ones. Moreover, the brain tissue
is also known to have certain electrical filtering properties that
allow slow oscillations to propagate more easily than fast ones,
and engulf larger populations of neurons (Buzsáki 2006; Nunez
and Srinivasan 2005).

In light of the evidence about the distribution of biological
frequency magnitudes, we expected that oscillation scores
assume higher values for low than for high frequencies (be-
cause they have higher magnitudes relative to the baseline
magnitude of the whole spectrum). This was indeed the case, as

A B C

FIG. 4. Examples of oscillation scores for different frequency bands. A: the theta score. A theta band oscillation at 5 Hz, investigated with a 4- to 8-Hz band
window. The original ACH (top) and the smoothed, peakless ACH (top, thick black line) together with its corresponding frequency spectrum (bottom). B: the
alpha score. Similar to that in A, but for an oscillation of 9 Hz in the alpha band (8–12 Hz). C: the beta score. Similar to that in A, but for an oscillation of
27 Hz in the beta-high range (20–30 Hz). The insets represent the peak magnitude at the oscillation frequency and the baseline magnitude of the frequency
spectrum. Data-set codes, unit codes, and experimental conditions are indicated on top. SU, single unit; MU, multiunit.
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indicated by the results shown in Fig. 4. The main question,
then, was how should one interpret the oscillation score for a
given band? Does the obtained value reflect very strong or
rather weak oscillations?

Two remarks are in place here. First, one should not directly
compare oscillation scores across different frequency bands
(especially not across biological bands). Second, the border
between the nonoscillatory and oscillatory regimes should be
separately assessed for each individual band. To determine
these borders, we used experimental data recorded from cat
visual cortex and also simulated spike trains.

The experimental data were used to estimate the distribution
of oscillation scores for the nonoscillating regime. We started
with a large number of spike-sorted units (n � 725), recorded
from four adult cats, in seven distinct experimental sessions,
and with various types of stimuli, giving a total of 7,501 ACHs

across different stimuli (see METHODS). Of these units, only 416
were different because sometimes the same unit was recorded
in more than one session. We included only experimental
sessions in which no oscillations were present in any of the
frequency bands of interest. To identify these sessions, we
visually screened the ACHs for signs of an oscillatory modu-
lation. We could not totally eliminate very weak, stimulus-
dependent oscillations, as the visual estimation is subjective.
Using the large data set, we estimated, for each frequency band
(theta, alpha, beta-low, beta-high, and gamma), the distribu-
tion of oscillation scores for the nonoscillating regime (Fig. 5A,
Exp. Data). As expected, the distribution of oscillation scores
was wider for the theta and alpha bands. We identified the 95th
percentile of each distribution and used it as an estimate of the
threshold between nonoscillating and weakly oscillating re-
gimes, for each frequency band (Fig. 5B, thick dotted line).

FIG. 5. The oscillation score thresholds. A: distributions of oscillation scores for different frequency bands, computed on experimental data without
oscillations (“Exp. Data No Osc.”), on simulated spike trains without oscillations (“Simulation No Osc.”), and on simulated spike trains with strong oscillations
(“Simulation Osc.”). The 95th percentile is indicated for the nonoscillating case, whereas the 5th percentile is shown for the strongly oscillating case.
B: oscillation score boundaries for different oscillation frequencies. The nonoscillating (dark gray) zone is defined by using the 95th percentile of the distributions
in A, Simulation No Osc. The strongly oscillating regime (white area) is defined by taking the 5th percentile of the distributions in A, Simulation Osc. The 95th
percentile of nonoscillating experimental data distributions in A is represented by a thick dotted line. The light gray area represents the transition zone from
nonoscillating to strongly oscillating regimes.
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To estimate the range of oscillation scores for strong oscil-
lations, we needed an objective quantification of oscillation
strength. Therefore, we simulated oscillating spike trains (see
METHODS and APPENDIX) in which we could manipulate the
strength of oscillations. We first produced spike trains without
any oscillations, computed the distribution of oscillation scores
(Fig. 5A, Simulation No Osc.), and then we identified the 95th
percentile of each distribution. This provided an absolute
threshold for the nonoscillating state (Fig. 5B, thick black line,
delimiting the dark gray area). Note that the distributions for
the simulated data matched reasonably well those for experi-
mentally recorded data. In the latter case, the nonoscillating
regime scores were slightly higher because, as mentioned
previously, in some of the 7,501 ACHs, very weak oscillatory
activity could not be subjectively distinguished from nonoscil-
lating cases.

In the next step, we generated simulated data, at the other
extreme, exhibiting very strong oscillations (Fig. A1G).
Again, we computed the distribution of oscillation scores
(Fig. 5A, Simulation Osc.) and, this time, used the 5th
percentile, on the lower side of the distribution, to estimate
the threshold between moderate and very strong oscillations
(Fig. 5B, thick black line between the transition and oscil-
lating areas). As expected, low-frequency oscillations
yielded much larger scores than did high-frequency oscilla-
tions. We found a good match between the range of scores
obtained with simulated and experimental data exhibiting
oscillations (Fig. 4). On average, experimental data with
strong oscillations produced scores in the range of 40 –90
for the theta band and scores in the range of 10 –20 for the
beta-high/gamma bands (data not shown).

The area with scores between the nonoscillating and strongly
oscillating regimes can be considered as a fuzzy, transition
regime (Fig. 5B, Transition). Here, there was a continuum of
monotonically increasing oscillation scores, from weak to
strong oscillations.

We emphasize that the distributions in Fig. 5A are empiri-
cally determined and the thresholds of 95 and 5% are guide-
lines that delineate the borders between different oscillating
regimes. They are not to be considered as direct thresholds for
statistical significance testing. In practice, the oscillation
strength varies continuously from weak oscillations to very
strong ones and one should devise appropriate statistical tests
for the exact question being asked. For example, one could
compare the oscillation scores in two different experimental
conditions and test the significance of differences, considering
the appropriate type of test, depending on the shape of score
distributions, correcting for multiple comparisons, and so forth.

Performance of the oscillation score

Our previous analyses of experimental and simulated spike
trains indicate that the oscillation score indeed reflected, to a
high degree, the oscillation strength. However, we wanted to
have another, independent quantification of the meaningfulness
of the oscillation score. For that purpose, we relied on the
well-known relationship between oscillations in the LFP and
oscillations in spiking activity. It has been reported that neu-
ronal activity can be either weakly related to nearby LFP
activity (Kreiman et al. 2006) or strongly related, in which case
the spike-field coherence is high (Fries et al. 2001; Pesaran

et al. 2002). For strongly oscillating LFP activity, in a given
frequency band, it is expected that neurons will also strongly
oscillate. When spike-field coherence is high in the given
frequency band (Fries et al. 2001), the respective spike trains
exhibit precise phase locking with the respective LFP oscilla-
tions and thus also exhibit a strong oscillatory modulation. We
tested whether, for strongly oscillating LFP activity, the oscil-
lation score of individual neurons correlated with spike-field
coherence.

We have analyzed simultaneously recorded spiking and LFP
activity from cat area 17. We selected a session with strong
oscillations of LFPs in the beta-high band (�27 Hz). We first
quantified the strength of LFP oscillations in a manner similar
to the oscillation score: we computed the FFT spectrum on the
LFP signal and divided the peak magnitude, in the beta-high
band, to the baseline magnitude of the whole spectrum. We
called this measure “LFP oscillation score” and it revealed
strong and reliable LFP oscillations in all stimulation condi-
tions (14 stimuli; see METHODS) and for all 32 electrodes
(Fig. 6A). In the second step, we spike-sorted the units re-
corded on the 32 electrodes and obtained 86 single units. For
each unit, we considered in the analysis only the ACHs for
which the oscillation score could be reliably determined (484
ACHs; see Confidence estimation). The oscillation scores for
these units, shown in Fig. 6B, revealed a bimodal distribution,
with a group of nonoscillating or weakly oscillating responses
(OS � 10), and a separate group of strongly oscillating re-
sponses (OS 
 10). Some units did not exhibit oscillations for
any of the 14 stimulation conditions.

To examine the relationship between the LFP and spike
oscillations, we first computed the oscillation scores for units

A B

C D

FIG. 6. The relation of the oscillation score on spikes with local-field
potential (LFP) oscillations, for the case of a data set (col11b68) with strong
oscillations in the beta band ( fosc � 25–29 Hz). A: distribution of LFP
oscillation scores. B: distribution of spike oscillation scores on single units.
C: correlation between spike oscillation scores and LFP oscillation scores.
D: correlation between spike oscillation scores and spike-field coherence.
Data-set codes are indicated on top.
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and for the LFPs recorded from the same electrode as the
corresponding unit. We found that the oscillation scores for
LFPs and single units were only weakly correlated (r � 0.21;
r2 � 0.04). One reason might have been the bimodal distribu-
tion of spike oscillation scores. However, even if only the
group exhibiting strong oscillations was considered, the corre-
lation between spike and LFP oscillation scores remained low
(Fig. 6, B and C, portion on the right of the dotted line). Note
that the LFP oscillation scores were all high.

Next, using the method described in Fries et al. (2001), we
computed the spike-field coherence between single units and
the corresponding LFP signal, in the beta-high band (20–30
Hz). We found that spike-field coherence was highly correlated
to the spike oscillation score (r � 0.92; r2 � 0.85; Fig. 6D).
When coherence was computed with a second method, based
on multitaper spectral estimates (Pesaran et al. 2002), similar
results were obtained (r � 0.86; r2 � 0.74; data not shown).
Because the LFPs exhibited strong oscillations, a correlation
between the real strength of oscillations in the spike train and
coherence was expected (when the coherence between spikes
and a strongly oscillating LFP is high, it follows that the spikes
also exhibit strong oscillatory behavior). The observed corre-
lation between the spike oscillation score and coherence indi-
cates that the former is a meaningful and reliable measure of
the strength of neuronal oscillations. Also, it is important to
note that the spike oscillation score was computed after apply-
ing the nonlinear transformation of removing the central peak
from the ACH and computing a ratio between spectral magni-
tudes. The fact that the spike oscillation score correlated
strongly with the spike-field coherence is a good indication that
these procedures do not impair the estimation of the real
oscillation strength.

Confidence estimation

So far, we have not estimated the degree to which an
oscillation score, for a given ACH, can be trusted. For single
units that exhibit very few spikes, it might happen that the
ACH (computed on all trials of a given condition) has false
peaks, due to chance. There is probably no perfect way to
estimate whether such peaks occur by chance or represent
legitimate oscillation peaks. However, when multiple trials
with the same stimulation condition are available, one can

require that most trials exhibit roughly the same ACH structure
(stimulation-condition stationary structure).

We developed a measure for quantifying the confidence with
which one can trust the oscillation score, called the confidence
score (see METHODS). We have to mention here that the confi-
dence score is not related to the concept of confidence inter-
vals, from statistics. Rather, it reflects the inverse of the
variation, thus stability. The measure is bound between 0 (no
confidence) and 1 (full confidence) and is based on the esti-
mation of the coefficient of variation for the oscillation score, on
a set of recorded trials. We analyzed a mixed data set with 86
single- and multiunits, some exhibiting strong oscillations in the
beta/gamma band (score 
10; n � 53), some others showing very
weak or no oscillations at all (score 	10; n � 33).

Figure 7A shows as an example a single unit with a very low
firing rate. The analyses revealed an oscillation frequency
fosc � 19.5 Hz (beta band) and an oscillation score OS � 10.4,
indicating relatively strong oscillations (see also Fig. 5B).
However, the shape of the ACH does not appear reliable.
Indeed, the confidence score was only CS � 0.384, indicating
that one should not trust the oscillation score OS. Figure 7B, by
contrast, depicts a single unit with an oscillation frequency
fosc � 29.3 Hz, having an oscillation score OS � 15.7 (very
strong oscillations; see also Fig. 5B) and a high confidence
score CS � 0.85.

Finally, we investigated whether there was a dependence
between the number of available spikes for computing the
ACH and the confidence score. Most methods relying on
correlation analysis cannot reliably estimate the oscillation
frequency and oscillation strength when the total number of
spikes is very low, and thus they need to rely on multiunits
(König 1994) or consider many experimental trials in the
analysis (Samond and Bonds 2005). We investigated how the
confidence score CS depends on the number of spikes that were
used to compute each of the 1,204 ACHs (86 units � 14
stimulation conditions). Figure 7C revealed a surprising result.
For spike counts up to about 200, the confidence score in-
creased linearly with the logarithm of the spike count (note that
the horizontal axis, representing the number of spikes used to
compute the ACHs, is shown on a logarithmic scale). Then, the
confidence saturated around CS � 0.8, occasionally reaching
higher values (	0.9), as the spike count increased further.
There are two important conclusions that stem from these

A B C

FIG. 7. The confidence score. A: a very poor ACH falsely indicating the presence of oscillations with a frequency of 19.5 Hz. The oscillation score is relatively
high (10.4), but the confidence score is small (0.38). B: a robust ACH indicating oscillations with a frequency of 29.3 Hz. Both the oscillation score and the
confidence score are high (15.7 and 0.85, respectively). C: dependence of the confidence score on the number of spikes that were used to compute the
corresponding ACHs. Note the log scale for the spike counts. The confidence score increases first linearly with the log of the spike count and then saturates, to
values 
0.65 (dotted line). Data-set codes, unit codes, and experimental conditions are indicated on top. SU, single unit.
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results. First, oscillation scores computed on ACHs that have a
confidence score CS �0.65 should not be trusted. The reason is
that, by adding more spikes to the ACH, the confidence would
rapidly increase, showing that the oscillation score tends to
become more stable across trials when more spikes are avail-
able. One cannot know whether the estimation of the oscilla-
tion score is reliable, when CS �0.65, because it is relatively
unstable over individual trials. Second, the confidence with
which one can trust the oscillation score converges exponen-
tially fast with the number of spikes (in this case for spike
counts up to �200). This means that even a small number of
spikes might suffice to yield a confident estimation of the
oscillation score. In our data set, 200 spikes represented firing
rates of about 2.5 Hz (20 trials, each of 4-s duration). Thus the
oscillation score measure lends itself to the analysis of single-
unit neuronal activity and is also applicable to cases where the
number of available experimental trials is small.

Comparison to other methods

We have seen that the oscillation score performs remark-
ably well on experimentally recorded data. However, it is

very important to analyze the relation between the method
proposed here and other existing methods both qualitatively
and quantitatively. For this purpose, we implemented three
additional methods: the generalized Gabor fitting (GGF),
described in König (1994); the secondary peak–valley dif-
ference (SPVD), described in Samonds and Bonds (2005);
and spectral techniques applied directly on the spike train.
We applied each method on three artificially generated
spiking data sets (see APPENDIX) having trials with a length of
30 s. Each of the three data sets had a different baseline
firing rate: 10, 27, and 50 Hz, respectively. The oscillation
frequency was fixed at 25 Hz (beta-high band). In addition,
at a fixed firing rate, we independently and systematically
varied the oscillation strength (Fig. 8A) by using a param-
eter (o, described in the APPENDIX) bounded between 0 (no
oscillation) and 1 (very strong oscillation). For each esti-
mation of oscillation strength, only a single trial was used,
to push the methods to their limit. We computed 100
estimations for each pair of firing rate– oscillation strength
and computed the mean, SD, and coefficient of variation of
these estimations.

A

B C D

FIG. 8. Comparison of different methods that estimate the strength of oscillations. A: performance of various methods on an artificial data set with different
firing rates (10, 27, and 50 Hz) and with differently expressed oscillation strengths in the beta-high band (25 Hz). Top row: means and SDs. Bottom row:
corresponding coefficients of variation. B: underestimation of the first satellite peaks with the generalized Gabor fitting (GGF) method when the chosen ACH
window was too large. C: distribution of strengths of oscillation with the GGF method on a data set from cat visual cortex with 76 weakly/nonoscillating cells.
D: distribution of oscillation scores on the same data set as in C.
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GENERALIZED GABOR FITTING. The GGF method, described in
König (1994) and used in many studies, approximates the
shape of the ACH with a generalized Gabor function having
eight parameters. The function is iteratively fit to the correlo-
gram by a Marquardt–Levenberg algorithm that tries to mini-
mize the fitting error. Since the method relies on an iterative
search for a minimum, it suffers from the problem of local
minima. The larger the number of parameters, the worse the
problem becomes. To compensate for this, we used 1,000
initial guesses for the parameters, also using an informed
technique that takes into account the mean of the ACH, the size
of the central peak, and so forth. After a successful fitting, the
strength of oscillation is computed as the ratio between the size
of the first satellite peak (relative to the baseline of the ACH)
and the baseline of the ACH (see Fig. 1A; Brecht et al. 1999;
Konig 1994).

We identified and summarized a set of qualitative problems
of the GGF method. The first and most important one is related
to the poor convergence since the fitting-error landscape has
many local minima. As a consequence, one must use many
initial conditions. Choosing these initial conditions, however,
is not an easy task since initial conditions can depend on such
parameters as the frequency of interest and the baseline of the
correlogram, for instance. In addition, the large number of
initial conditions (1,000 in our case) can render the method
very slow. Second, the GGF algorithm is not straightforward to
implement since it requires advanced minimization techniques
such as Marquardt–Levenberg or Newton. Third, as mentioned
earlier, the method does not fit correlograms that depart from
the Gabor model. This was quite frequently the case for the
data that we analyzed, yielding particularly large fitting errors
when oscillations were weak, or when rate covariation or
slower oscillations were present. Also, the method cannot cope
with multiple oscillation frequencies since there is only one
main frequency of the Gabor. Enriching the model to incorpo-
rate multiple oscillation frequencies would require additional
parameters and would pose even more difficulties to the fitting
algorithm. Fourth, the choice of the correlation window is very
important when rate covariation is present. In contrast to the
oscillation score, which automatically adjusts the window as a
function of the frequency of interest, the GGF requires the user
to choose the window and this is not exactly straightforward. In
Fig. 8B we present a case where the choice for an overly large
window of an ACH exhibiting slow rate covariation/slow
oscillations leads to the underestimation of the size of the first
satellite peak and thus the oscillation strength. For a large data
set, with many ACHs to fit, an automated estimation method
based on the GGF cannot easily decide on the optimal size for
the ACH window. Fifth, as discussed before, the GGF method
might have problems when refractoriness and rate covariation
are simultaneously present, producing false oscillation peaks.
Finally, we also noticed that for cases without or with weak
oscillations the GGF method produces highly distorted distri-
butions for the oscillation strengths, because the ACHs that are
not fitted well, frequently have an estimated oscillation
strength of 0 (Fig. 8C; notice the very high peak at 0). Such
distorted distributions can pose serious problems to parametric
statistical methods that are not robust against the violation of
certain assumptions, such as unimodality. In contrast, the
oscillation score provides comparatively smooth distributions
that can easily be used in statistical tests (Fig. 8D).

We next estimated the “quantitative” behavior of the GGF
by applying it to the three artificially generated data sets having
various firing rates and systematically varied oscillation
strengths. For high firing rates (27 and 50 Hz), the GGF
method performed relatively well. However, for the case of
very weak/no oscillations, even at high firing rates, the GGF
method became very imprecise (Fig. 8A, Coeff. Variation).
This phenomenon was due to the fact the GGF model can only
poorly fit the ACHs with weak or no oscillations. Very fre-
quently, the strength of oscillation, for these cases, was 0. In
some cases, the oscillation strength was also different from 0,
having small values. This relation critically depended on the
optimality of automatic fitting, leading to a distorted distribu-
tion of oscillation strengths, similar to the one shown before in
Fig. 8C. In addition, for any oscillation strength, at a given
firing rate, the coefficient of variation for the GGF method was
larger than its counterpart computed for the oscillation score
(Fig. 8A, GGF and OS).

For a low firing rate of 10 Hz, which produced very noisy
ACHs (due to the length of the spike train of only 30 s), the
GGF model became very unreliable. The coefficient of varia-
tion was very large at all oscillation strengths (Fig. 8A, GGF).
Although the expected value for the oscillation strength was
relatively good, there was a high fluctuation on individual
spike trains, even for the case of strong oscillations, indicating
poor fittings.

SECONDARY PEAK–VALLEY DIFFERENCE (SPVD). A different method
for computing the strength of oscillations, proposed in Samonds
and Bonds (2005), relies on the difference between the second
satellite peak and the second valley of the normalized ACH.
The method is relatively simple; the most complex step in-
volves only the computation of the normalized ACH, which
also removes shift-predictor components (for details see
Samonds and Bonds 2005). The method suffers most when the
secondary peak and valley cannot be easily identified, such as
in very noisy ACHs (when few spikes are available). Quanti-
tatively, we measured the performance of the method on the
three artificial data sets. As expected, the SPVD method
performed poorly for low firing rates (10 Hz), where the ACH
was very noisy. In that case, it failed to distinguish between
strong and weak oscillations (Fig. 8A, SPVD, 10 Hz; note the
SDs). For higher firing rates (27 and 50 Hz) the method
performed increasingly well. The coefficients of variation were
relatively low for all firing rates and oscillation strengths.
However, there was an already obvious and very important
problem with the SPVD method: the oscillation strength esti-
mations highly depended on the firing rate (Fig. 8A, SPVD).
The problem stems from the fact that the difference between
the secondary peak and secondary valley does not reflect in any
way the baseline of the ACH. The same difference could be
“riding” on top of either a small or a large baseline. Since the
strength of oscillations should reflect how strongly the oscil-
latory component is expressed relative to the other compo-
nents, the SPVD method provides highly inaccurate results.

DIRECT SPECTRAL TECHNIQUES. Spectral techniques are fre-
quently used to compute the spectrum of spike trains. How-
ever, they do not provide a direct quantification of the strength
of oscillations. A measure similar to the oscillation score has to
be derived for that purpose. We implemented two techniques to
compute the spike magnitude spectrum: the multitaper tech-
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nique (Jarvis and Mitra 2001) and the direct FFT with a
Blackman window. After computing the magnitude spectrum,
we quantified the strength of oscillations by applying exactly
the same procedure as that for the oscillation score (see
METHODS, Computation of the oscillation score, step 5). For that
reason this category of methods will be denoted by “oscillation
score on raw spikes” (OSRS). All the other measures described
in conjunction with the oscillation score also apply to the
OSRS (confidence score, etc.).

We first implemented the multitaper technique (Percival and
Walden 1993) adapted to spike trains, following the method
described by Jarvis and Mitra (2001). The method uses a set of
orthogonal tapers (here we used discrete prolate spheroidal
sequences) to produce a smooth spectrum. The larger the
number of tapers, the smoother the estimate and the lower the
variance, however, the peak reflecting the oscillation frequency
becomes broader and more imprecise. The number of tapers
used to compute spike spectra is usually in the range of nine
(Pesaran et al. 2002). In our case, such a large number of tapers
yielded smooth but very broad peaks in the spectrum at the
oscillation frequency. This created imprecision in identifying
the peak and also created a spread of power that reduced the
size of the peak. For this reason, we used only three tapers and
a sliding window of 1024 ms for analysis. Qualitatively, the
multitaper method was the most difficult to implement. Also, it
was slower compared with the SPVD and the oscillation score.
Although the multitaper technique was suggested to yield high
performance in estimating the spectrum (Pesaran et al. 2002),
our own experience on the well-controlled simulated spike
trains showed a rather poor performance of the multitaper-
based OSRS. First, we have identified that the modulation of
the oscillation frequency in the model spike trains
(see the APPENDIX) produced strong violations of stationarity
(and this is also the case, in general, for recorded data). For that
reason, a proper size for the sliding window needs to be
chosen. Windows that are too small yield insufficient spikes for
the estimation, whereas windows that are too large could suffer
from the nonstationarity of the data (stationarity is a very
important assumption when applying the FFT). Quantitatively,
the performance of the OSRS for low firing rates was rather
poor (Fig. 8A, OSRS, 10 Hz). In general, increasing the length
of the spike train does not improve performance because the
spectral estimation is local to the sliding window and the noise,
spread in all frequency bands, does not completely average out.
Increasing the size of the sliding window is not an option
either, for the reasons described earlier.

For higher firing rates, the OSRS had better performance,
but showed the same firing rate dependence as that of the
SPVD method (Fig. 8A, OSRS). To understand the phenome-
non, we computed separately the magnitude of the DC com-
ponent, the magnitude of the peak at the oscillation frequency,
and the integral of the rest of the spectrum. The important
finding was that, although the DC and the peak scaled with the
firing rate, the rest of the magnitude spectrum scaled much
slower. This effect, due to the noise of the spectrum estimation
(noise that does not get averaged out across different sliding
windows), leads to the faster scaling of the peak with respect to
the integral of the spectrum and thus the rate dependence of the
OSRS. We next investigated whether this scaling was related
to the fact that we used the magnitude spectrum instead of the
power spectrum for computing the OSRS. According to the

Wiener–Khinchin theorem, the FFT of the autocorrelation
function gives the power spectrum. Thus we hypothesized that
the difference between the oscillation score and OSRS might
stem from the fact that we used the magnitude instead of the
power spectrum to compute the OSRS. We next computed the
power spectrum on the raw spikes by using the same multitaper
technique and again computed the OSRS. The results were
qualitatively the same, exhibiting strong rate dependence.

In addition to the multitaper technique, we also applied a
more classical method, that is, the FFT directly on the spike
train, with a sliding window of 1,024 ms and Blackman
windowing. We simply computed the FFT, either directly on
the spike train or on a smoothed signal, obtained from the spike
train using a Gaussian kernel with SD of 2 ms. Both methods
yielded similar results. Surprisingly, the spectrum estimation
with this simplified method was much more precise than that
for the case of the multitaper. The rate dependence was still
present and strong, although discriminability increased dramat-
ically (data not shown) even for low firing rates. The SDs were
very small and so were the coefficients of variation. Qualita-
tively, the performance curves looked very similar to those in
Fig. 8A (OSRS), with the difference that SDs were much
smaller and thus the estimations more precise. However, both
the OSRSs, based on direct FFT and on multitaper spectral
techniques, were heavily biased by the firing rate.

We conclude that the rate dependence of the OSRS stems
from the highly nonlinear and nonuniform scaling of different
components of the spectrum with the firing rate. The effect, for
the particular artificial data sets that we analyzed, is due to the
accumulating noisy spectral components that are spread in all
frequency bands and that do not scale with rate as fast as the
DC and the oscillatory component. It is expected that this
effect is also very pronounced for experimentally recorded
spike trains that exhibit highly nonstationary, transient fre-
quency components, especially in awake preparations.

THE OSCILLATION SCORE. In addition to the three different
methods, we also computed the oscillation score on the three
artificial data sets. The oscillation score was the fastest method,
and by far the simplest to implement (except for applying the
FFT directly on spikes). It also yielded the best results. For
high firing rates (27 and 50 Hz) the estimations of the strength
of oscillations were very precise (see Fig. 8A, OS, coefficients
of variation) and completely independent of the firing rate.

For the low firing rate of 10 Hz, when the ACH was
particularly noisy, the oscillation score (OS) still performed
remarkably well. For the case without oscillations, the OS had
a tendency to overestimate the strength of oscillations (Fig. 8A,
OS, 10 Hz). The scores obtained were still in the safe range of
the very weak/nonoscillating regime (see Fig. 5B at 25 Hz).
This problem was described before as being introduced by the
noise in the ACH, which produces a slight overestimation of
the strength of oscillations (see Fig. 7A for an extreme case).
However, with the confidence score at hand, one can easily
detect these cases and carefully judge how to interpret the
score. Again, we mention that the overestimation is still in the
“safe” range/boundary of the very weak oscillations. For
medium and strong oscillations and a firing rate of only 10 Hz,
the OS had a tendency to slightly underestimate the oscillation
strength. However, the same was the case with the GGF and
this was probably due to the signal-to-noise ratio that was low,
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due to the small number of spikes. It is worth noting that the
discriminability between weak/no-oscillations and strong os-
cillations was excellent, even for the case with low firing rates
and highly noisy ACHs.

D I S C U S S I O N

Neuronal oscillations and their synchronization are receiving
increasingly greater attention because there is now ample
evidence that they might play important functional roles in the
brain. At a mechanistic level, neuronal oscillations are likely to
originate from two distinct processes. The first involves the
interaction between excitatory and inhibitory cells and has
been studied extensively, both experimentally (Whittington
and Traub 2003) and theoretically (Brunel and Hakim 1999).
The second relies on preferential locking of neurons, induced
by their individual frequency preferences (Hutcheon and
Yarom 2000; Mureşan and Savin 2007). The latter process is
also called membrane resonance and is known to be voltage
modulated (Puil et al. 1994). It is very likely that neuronal
oscillations result from a combination of these mechanisms,
dependent on the frequency of oscillations. It is also likely that
different types of oscillation have a variety of distinct func-
tional roles in the brain. Direct evidence for the functional role
of oscillations was put forward in very recent studies. In
Montgomery and Buzsáki (2007) gamma oscillations were
shown to dynamically couple hippocampal CA3 and CA1
regions. Lakatos et al. (2007) have shown that oscillatory
activity can dramatically modulate multisensory interaction in
the primary auditory cortex, providing a “context” within
which sensory information is integrated. Their results also
suggested a complex patterning of different oscillatory rhythms
and this was also found to be the case in Isomura et al. (2006)
who showed that slow oscillations can coordinate the integra-
tion/segregation of activity in the hippocampus and entorhinal
cortex. Schaefer et al. (2006) further suggested that neuronal
oscillations can enhance stimulus discrimination by ensuring a
precise control over the timing of action potentials. The timing
of spikes, relative to the cycle of the ongoing gamma oscilla-
tion, was also proposed as a flexible neuronal code (Fries et al.
2007) and it was suggested that the windows of opportunity
created by the oscillation cycles may promote coherent coor-
dination of neuronal populations in the temporal domain (Fries
2005). There is now also evidence from studies on humans that
neuronal oscillations constrain the timing of firing of cortical
and hippocampal neurons, across different frequency bands
(Jacobs et al. 2007). Taken together, these recent studies and
many others as well (e.g., Engel et al. 1990; Fries et al.
2001; Klimesch et al. 2007; Lutz et al. 2004; Martinovic
et al. 2007; Meador et al. 2002; Melloni et al. 2007; Murata
et al. 2004; Pesaran et al. 2002; Rodriguez et al. 1999;
Samonds and Bonds 2005; Schoffelen et al. 2005; Singer 1999;
Tallon-Baudry et al. 1997, 2004; Uhlhaas and Singer 2006;
Vidal et al. 2006) suggest that neuronal oscillations do matter
in the brain. The method that we have proposed here could
provide a useful tool for investigating the functional role of
neuronal oscillations because it allows the assessment of os-
cillatory patterns in the spiking activity of single neurons.

The oscillation score gives a reliable estimate of the strength
of oscillations in a given frequency band. The described
method is simple and fast. First, the original ACH is smoothed

with a fast kernel, to remove the noise. Then a slower Gaussian
kernel is applied to detect the extension of the central peak,
which is subsequently removed from the fast-smoothed ACH.
An FFT estimates the spectrum of the peakless smoothed
ACH, and next, the oscillation score is computed as the ratio
between the maximum frequency magnitude in the band of
interest and the baseline magnitude of the entire frequency
spectrum. As we have seen, the obtained oscillation score
depends on the frequency band, being normally higher for
lower frequencies. Moreover, when the LFPs show strong
oscillations, the score is highly correlated with the spike-field
coherence. Finally, the method is applicable to units that have
very low firing rates (i.e., spike-sorted single units) and con-
verges to a reliable, confident oscillation score, exponentially
fast with the number of spikes used to compute the ACH.

In the following, a few important aspects need to be dis-
cussed. First, we shall dwell upon the relation of our method to
other similar techniques for estimating the oscillation strength
in neurons. Second, we will scrutinize the correct applicability
and the weaknesses of the oscillation score method, proposing
a few solutions. Finally, we will discuss some general obser-
vations that stem from our own experience on analyzing large
experimental data sets.

Relation to other methods

The oscillation score falls into the category of methods that
rely on the correlation analysis of neuronal spike trains. Thus,
it is not easily comparable to methods that are based on spectral
estimations directly from spike trains (Bair et al. 1994) or from
taper-smoothed spike trains (Jarvis and Mitra 2001). However,
it can be readily compared with methods that estimate oscilla-
tion strength from auto- or cross-correlograms (König 1994;
Samonds and Bonds 2005). The oscillation score is different in
many respects from these methods. First, the presented method
does not assume any underlying model that needs to be fitted
to the correlogram (like the Gabor model; König 1994). This
fact allows it to cope properly with a variety of correlogram
shapes, and it is, thus, not sensitive to any kind of initial
conditions (since it does not fit a function, initial conditions are
not defined). We have to mention, however, that the oscillation
score relies exclusively on autocorrelograms and is not appli-
cable to cross-correlograms. As a result, our method is not
useful for the quantification of neuronal synchrony between
pairs of neurons, but only for the quantification of oscillation
strength (note that synchrony can also be expressed indepen-
dently of oscillations, depending on the size of the involved
population; Bhattacharya 2001; Brecht et al. 1998). For syn-
chronization analysis other methods are available and perform
reasonably well (König 1994; Womelsdorf et al. 2007).

Second, our method does not rely on the estimation of peak
sizes in the ACH. As a consequence, even when the number of
available spikes is small, it can reliably estimate the oscillation
strength from the frequency spectrum of the ACH. Other methods
need a considerable amount of data to properly identify and
estimate the sizes of peaks and troughs in the correlogram
(Samonds and Bonds 2005). Moreover, we removed the central
peak, and sometimes also its side troughs, so as not to induce false
oscillatory peaks in the frequency spectrum.

Third, the oscillation score can cope with multiple simulta-
neous oscillation frequencies and it can correctly estimate their
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relative expression in the spiking activity. The reason is that it
searches selectively in a desired frequency band to identify the
oscillation frequency. When such a frequency is identified, the
method normalizes its magnitude to the baseline magnitude of
the frequency spectrum. Thus, an estimation of the expression
of the identified frequency, relative to other frequencies, is
obtained. Such estimations are difficult with methods that rely
on the size of satellite peaks in the correlograms.

Finally, the qualitative and quantitative comparison of dif-
ferent methods (Fig. 8) provided very insightful results. The
generalized Gabor fitting (König 1994) performs well when the
fitting is good. However, the quality of the fit depends on many
factors rendering an automated procedure very difficult. One
must be very careful in making sure that the fitting was made
properly because it can dramatically influence the estimations
of the strength of oscillations. The secondary peak–valley
difference (Samonds and Bonds 2005) method performs very
poorly for low firing rates and is also highly biased by the firing
rate, leading to false conclusions about the strength of oscilla-
tions. Spectral techniques (Bair et al. 1994; Jarvis and Mitra
2001; Pesaran et al. 2002) are sensitive to the spectral smooth-
ing that is applied and also to the size of the sliding window.
Violations of stationarity can dramatically affect the spectral
estimations. They are also biased by the firing rate since the
baseline of the spectrum does not scale with the firing rate as
fast as the peak at the oscillation frequency (at least in the
model spike trains that we used). We conclude that the best is
to compute the spectrum on the ACH, not directly on spikes. In
addition, with the central peak of the ACH removed, one can
obtain very accurate results, such as those provided by the
oscillation score. It is also worth mentioning that the tech-
niques based on ACHs can take advantage of longer traces of
data. Even for much lower firing rates than those we used for
testing (10–50 Hz), if one has a sufficient number of trials or
sufficiently long trials, the ACHs can become smooth enough
to provide very accurate estimations (see Fig. 7 and com-
ments). This is, in general, not the case with spectral tech-
niques because the constant noise in the sliding window,
spread across all frequency bands, did not get averaged out
with longer traces of data, at least for the case of spiking data
investigated here. The comparison of different methods, pre-
sented in Fig. 8A, strongly suggests that methods based on
correlation analysis are still very effective tools that can out-
perform more modern, direct spectral techniques, at least on
some tasks, such as the estimation of the oscillation strength in
spike trains. The oscillation score is, in particular, a hybrid
method relying on both correlation analysis and spectral tech-
niques, and thus, it can take advantage of both.

Applicability and weaknesses

The only input parameters that are supplied to the method
are fmin and fmax—the lower and higher bounds that define the
frequency band of interest. These parameters are also the most
important since they determine how much information is re-
moved from the vicinity of the central peak of the ACH and
also the band within which the oscillation frequency is identi-
fied. An incorrect setting for the two parameters could lead to
underestimations of the oscillation strength and also to the
detection of false oscillation frequencies. However, one should
keep in mind that the oscillation score has been designed to

look at a single frequency band at a time! If biologically
relevant frequency bands are separately used as frequency
limits, then the method gives accurate and clean results. These
bands are: theta (4–8 Hz), alpha (8–12 Hz), beta-low (12–20
Hz), beta-high or beta2 (20–30 Hz), gamma-low (30–50 Hz),
and gamma-high (50–80 Hz). Also note that the frequency
band of interest is implicitly required for other methods as well
(e.g., for the methods relying on correlation analysis, one needs
to choose the size of the correlation window as a function of
the frequency of interest).

Another potential problem of the method can occur if one
looks in a band higher than the actual oscillation frequency.
Very rarely, if the oscillation frequency has a high power
relative to the baseline, and the ACH exhibits high levels of
noise, the frequency spectrum can display strong harmonics
having higher frequencies, at multiples of the true oscillation
frequency. By looking into bands higher than the oscillation
frequency, one might actually quantify, by mistake, the har-
monics of the real frequency. This problem can be easily
resolved by calculating the confidence score, which, in our
analyses was usually very low (due to noise) for ACHs that
produced strong harmonics. Moreover, one should pay atten-
tion to oscillation frequencies with a high score, detected at
exactly the lower limit of the interval of interest ( fmin). This
might indicate the presence of a lower frequency of oscillation
spreading to higher frequencies in the spectrum due to leakage
that occurs at the border. In such cases one should inspect the
ACH and the frequency spectrum and, if necessary, select a
lower frequency band for inspection.

As a general rule, it is safer to inspect the frequency
spectrum and ACH before drawing definitive conclusions on
the interpretation of the oscillation score. Moreover, one has to
take into account the confidence score before giving any
meaningful interpretation to the value of the oscillation score.
When the confidence score exceeds the value of 0.65, one is
likely to be on the safe side. The software package we provide
as support (see APPENDIX) allows one to have access to all
relevant variables: the ACH, the smoothed ACH, the peakless
smoothed ACH, the frequency spectrum, and so forth.

General observations and concluding remarks

Before concluding, we share a few important remarks. First,
we have observed that oscillating single-unit activity yields
smoother ACHs and higher oscillation scores than those of
the corresponding multiunit activity (originating from the same
electrode). Although this result is somewhat counterintuitive
(because multiunits have more spikes), this difference can
be explained by keeping in mind that cells usually engage in
oscillatory behavior when stimulation is optimal (Engel et al.
1990), and thus in such conditions, single units have quite
elevated rates, too. Moreover, individual cells that contribute to
the multiunit activity, like pyramidal cells and interneurons,
could have slightly different oscillation properties. This leads to a
less well defined oscillatory behavior in the multiunit average.
Our method is also very robust with single-unit activity and
therefore one should rely on sorted, single-unit data, whenever
possible.

Second, since the oscillation score is a global measure for
the ACH that directly characterizes its frequency distributions,
the reliability of the oscillation score across individual trials
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also reflects the reliability, and stationarity, of the ACH. In
principle, one could use the confidence score, as defined in this
study, to quantify how reliable the ACHs are, from the per-
spective of stationary responses to the stimulus.

Third, other nonbiological bands can be considered, but one
should choose very narrow bands, 5–10 Hz in width. We success-
fully quantified the oscillation frequencies and oscillation
strengths for very slow oscillations (2–3 Hz) and very fast ones
(90–100 Hz). However, we used narrow bands of inspection and
we also relied on the frequency spectrum to guide this choice.

Fourth, as we have seen, the oscillation score can be well
estimated on a relatively small number of spikes. This allows
one to take into consideration only a few trials and single-unit
activity when estimating the oscillatory behavior of the cell.
Ideally, one should use the minimum amount of trials, for
which the confidence score reaches a maximum, to avoid the
problems of nonstationary oscillation frequencies caused by
changes in long-term excitability, cortical state, and so forth.
Increasing the number of trials might actually impair the
detection of oscillations, if their frequency/expression is drift-
ing in time. The oscillation score together with the confidence
score allow for a flexible decision on how to select the
experimental data for analysis.

In conclusion, our method behaves very well on single-unit
neuronal data. It converges to a confident estimation exponen-
tially-fast with the number of available spikes. We are not
aware of any other method that is so robust, relative to the
number of spikes required to achieve accurate estimations. The
oscillation score, with its various flavors (theta score, alpha
score, beta score, and gamma score), should prove a very
useful tool for characterizing the oscillatory responses of indi-
vidual neurons and for helping to advance our knowledge on
the very complex, interesting, and fascinating realm of neuro-
nal oscillations.

A P P E N D I X

Software package

Open source implementations for the computation of the oscillation
score and estimation of the confidence are freely available for down-
load at: http://www.raulmuresan.ro/sources/oscore. The algorithms
have been implemented in C��, Delphi, and MATLAB and are also
available as Windows Dynamic Link Libraries (DLL).

Algorithms for computing the oscillation score
and the confidence score

Variables:
fmin—the lower bound for the frequency band

of interest;
fmax—the lower bound for the frequency band

of interest;
fc—correlogram frequency in Hz;
w—the width of one flank of the ACH;
W—the width of the buffers � 2*w;
ACH—the original autocorrelation histogram;
sgmfast—the standard deviation of the fast

Gaussian kernel;
Sfast—fast smoothed ACH;
sgmslow—the standard deviation of the slow

Gaussian kernel;
Sslow—slow smoothed ACH;
slope—the slope of Sslow at a given offset;

tleft—the index on the left, for cutting the
central peak;

S-Pfast—fast smoothed, peakless ACH
Sfft—the spectrum of S-Pfast;
Mpeak—the peak magnitude in the band of interest;
fosc—the oscillation frequency;
Mavg—the baseline magnitude of the spectrum;
Os—the oscillation score;
Ost—array holding the oscillation scores for

each individual trial;
sgm_Ost—the standard deviation computed on

the array Ost;
mean_Ost—mean of the Ost array;
Cv—coefficient of variation;
Cs—confidence score;

//1. Computation of the auto-correlation histo-
gram (ACH)
w :� pow(2,floor(max(log2 (3*fc/fmin), log2
(fc/4)))�1);
W :� 2*w;
ACH :� Compute_Autocorrelation(neuron,
condition,trials);

//2. Smoothing
sgmfast :� min(2,134/(1.5*fmax))*fc/1000.0;
Sfast :� Gaussian_Smooth(ACH,sgmfast);

//3. Removing the central peak of the ACE
sgmslow :� 2*134/(1.5*fmin)*fc/1000.0;
Sslow :� Gaussian Smooth (ACH,sgmslow);
for i:�0 down to �w�1 do //identify the

limits of the peak
slope:�(Sslow[i]�Sslow[i�1])*W/Sslow[0];
if (slope �� tan (PI*10/180)) then

tleft :� i;
break;

endif;
endfor;
if (i�0) then tleft :� 0; //index not found
//Effective removal of the peak:
S-Pfast :� Sfast;
for i:�tleft�1 to abs (tleft)�1 do //the ACH

is symmetric;
S-Pfast[i] :� Sfast[tleft]; //overwrite the
peak;

endfor;
//4. Applying the FFT

SFFT :� FFT(S-Pfast); //the spectrum of the
peakless fast-smoothed ACH;

//5. Estimation of the oscillation score
fosc :� fmin;
Mpeak :� SFFT[HzToBins(fmin)]; //assume the
highest magnitude is at fmin
for i:�HzToBins(fmin) to HzToBins(fmax) do

//identify fosc
if (SFFT[i] 
 Mpeak) then

Mpeak :� SFFT[i];
fosc :� BinsToHz(i);

endif;
endfor;
Mavg :� Compute_Average(SFFT);
Os :� Mpeak/Mavg; //the final oscillation score

//Estimation of the confidence score
for i:�1 to n_trials do Ost[i] :� Oscil-
lation_Score(i);
sgm_Ost :� STDEV(Ost);
mean_Ost :� Compute_Average(Ost);
Cv :� sgm_Ost / mean_Ost;
Cs :� 1/(1�Cv);
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Generating artificial spike trains

The spike train model tries to mimic basic properties of real
neurons such as firing rate, oscillation frequency, and spike-timing
properties such as intraburst interspike intervals (ISIs) or refractori-
ness. These properties were quantitatively determined from the re-
cordings used throughout this study. We used two distinctive control
processes to generate the artificial spikes: a global discharge proba-
bility function ps(t) (Fig. A1A) and a finer temporal process that
controls exact spike timing (refractoriness, bursting, etc.; Fig. A1C).

The spike discharge probability function ps(t) should have the
following properties: first, it should allow the spike train to exhibit a
preferred oscillation frequency for transient periods of time; second, it
should be able to control the stability and strength of the desired
oscillation; and third, it should allow some control over the firing
rates. The amount of oscillation is controlled by the mixing factor o
(Eq. A1) of two discharge probabilities po(t) and pb(t), which corre-
spond to one oscillatory process and a background process, respec-
tively. To obtain a transient oscillation, we start from a sine proba-
bility function and we modulate its frequency (Fig. A1A) with a
random process fo(t) that takes into account the past values of the
frequency and thus has memory and offers stability (Eq. A4). The
importance of the history fades in time exponentially, with a decay
time constant 
. The function rand[�1,1](t) adds noise, with values in
the interval [�1, 1], to the frequency, with a strength factor m. With


 and m we control how fast the oscillation frequency changes in time.
Boundaries can be imposed on the frequency range, such that the
frequency of po(t), and thus oscillation preference, becomes stable in
a certain range (Fig. A1B, fo). The background activity pb(t) is
generated in a similar fashion but, in this case, the stability of the
process is lowered and oscillation frequency fb(t) varies in a much
broader frequency interval (Fig. A1B, fb). The spikes are generated
only in regions where ps(t) is 
0 (Fig. A1A), and are concentrated
toward the peaks of ps(t) (where the probability of producing spikes is
higher; Fig. A1C). The number of generated spikes depends on the
positive area of ps(t). With the offset (Fig. A1A) we can control how
well the spikes are aligned to the desired oscillation [the peaks of ps(t)
approach a probability of 1], whereas with the area of the positive ps(t)
we can influence how many spikes are generated overall and thus the
firing rate. An interesting case is when ps(t) is �0 most of the time,
having high positive values for only short periods of time [when the
amplitude of ps(t) is very high while the offset is also very large; see
Fig. A1A]. This situation results in very precise firing patterns. In the
end, with ps(t) we can control the periodicity of the spike trains in a
manner that realistically mimics the preferred oscillation frequency of
recorded neurons

ps�t� � opo � �1 � o�pb (A1)

A B

C

D

E

F G

FIG. A1. Model for simulating spike trains. A: parameters of
the spike discharge probability, ps. The ps(t) is obtained by a
mixture (o � 0.3; see Eq. A1) of two processes, po(t) and pb(t),
with frequencies modulated by time-varying functions, fo(t) and
fb(t), respectively, whereas its amplitude and offset (“offset”)
are fixed for one run. Spikes are generated only if ps is between
0 and 1 (gray zone). B: variations of the modulating frequencies
fo(t) and fb(t) (black and gray, respectively) around a target of
25 Hz. fo(t) is bounded in this particular example between 23
and 27 Hz, whereas fb(t) ranges from 0 to 100 Hz. Note the
relatively slow varying profile of fo(t) due to its strong history
dependence and boundaries. C: spike timings. A tonic spike is
represented as a thick black vertical line; spikes in bursts are
denoted by thick gray lines. The spike trains are generated
taking into account: the refractory period rtonic, after tonic
spikes; the intraburst interspike interval (ISI) bISI; the refractory
period rburst, after a burst of spikes; and the burst length blength.
D: burst length probability distribution P(blength), measured
from intracranial recordings of an anesthetized cat. E: intraburst
ISI probability distribution P(bISI), measured from the same
data as in D. F: ACH for a single-unit neuron recorded from cat
area 17. G: ACH example for an artificial spike train generated
to match the basic characteristics of the neuron in F. Data-set
codes, unit codes, and experimental conditions are indicated on
top. SU, single unit.
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At smaller timescales the model controls the timings between the
spikes and the burstiness of the generated data. Experimentally re-
corded spike trains frequently exhibit bursts with duration between 3
and 17 ms (Fig. A1D). The simplest way to model the burst proba-
bility, pburst(t), is to set it as a fraction of ps(t) (Eq. A5). Once a
discharge is initiated this probability function is used to determine
whether a tonic spike or a burst is generated (Fig. A1C).

To obtain realistic spike trains, we first computed the distribution of
burst lengths (Fig. A1D) and intraburst ISIs (Fig. A1E) by using
experimentally recorded spike trains. In the simulated data, if a burst
occurs then its length is set according to the measured distribution of
burst lengths (Fig. A1D). The intervals between the spikes in the burst
are set based on the measured intraburst ISI distribution (Fig. A1E).
Immediately after a tonic spike, or a burst, a refractory period (rtonic

and rburst, respectively, in Fig. A1C) prevents any discharge from
being initiated. These refractory periods are uniformly distributed
between 5–10 and 10–20 ms, respectively. Refractory periods, intra-
burst ISIs, burst lengths, and a burst probability constant, k � 0.8,
induce a biologically plausible center-peak shape in the ACH (Fig.
A1G), which is lost if k is set to 0

pburst�t� � k �ps�t� (A5)

In Fig. A1F we show the ACH of an experimentally recorded
neuron from cat area 17, whereas in Fig. A1G we present the ACH of
a corresponding artificial spike train. The spike train was generated to
match the basic properties of the neuron in Fig. A1F: the oscillation
frequency (�29 Hz; see also Fig. A1B), discharge rate (7.5 Hz, real;
8.1 Hz, artificial), and the bursting parameters (Fig. A1, D and E). The
two ACHs, for the real and simulated spike trains, look remarkably
similar.
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