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a b s t r a c t

Elaborated data-mining techniques are widely available today. Nevertheless, many non-linear relations
among variables remain undiscovered in multi-dimensional datasets. To address this issue we propose
a method based on the concept of fractal dimension that explores the structure of multivariate data and
apply the method to simulated data, as well as to local field potentials recorded from cat visual cortex.
We find that with changes in the analysis scale, the dimensionality of the data often changes, indicating
first that the data are not simple fractals with one unique dimension and second, that, at a certain scale,
important changes in the geometric structure of the data may occur. The method can be used as a data-
mining tool but also as a method for testing a model’s fit to the data. We achieve the latter by comparing
the dimensionality of the original data to the dimensionality of the data reconstructed from a model’s
description of the data (here using the general linear model). The method provides indispensable help in
estimating the complexity of non-linear relationships within multivariate datasets.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Data analysis requires investigation of relations between data
points, and by any type of such analysis, irrespectively of whether
explorative or hypothesis-driven, only a limited subset of all possi-
ble relations can be addressed. Despite the elaborated data-mining
procedures, many such relations in many datasets remain hidden.
We can only guess how many (important) scientific insights have
been missed just because patterns could not be easily detected in
otherwise, perfectly reliable and legitimate sets of data. Therefore,
we should welcome every new analysis method that is able to probe
new relationships and present the results in an elegant and easily
interpretable way. For such methods, reduction of dimensional-
ity plays an important role (Brand, 2003; Levina and Bickel, 2004;
Tenenbaum et al., 2000). In the present study we propose a method
that is designed to explore relations across multivariate data points
and that is based on the concept of fractal dimension.

1.1. The concept of fractal dimension

A fractal is an object with a high degree of self-similarity,
whereby globally the object looks very similar to its details
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(Falconer, 2003). We show three example fractals in Fig. 1a–c and
for one of them we illustrate how it is created by a simple iterative
procedure (Fig. 1a) (Falconer, 2003, pp. xviii–xx). Perhaps the most
common quantitative description of a fractal is the measure of its
dimension. As the dimensionality of standard geometric objects,
e.g., triangles and cubes, can be grasped easily by intuition, it is
also easy to acquire intuitive understanding of fractal dimensions.
Depending on the space that they occupy, fractals have different
dimensionality and they can be given by real numbers. For exam-
ple, the Koch fractal in Fig. 1a occupies a D = 1.26-dimensional space.
The Sierpinsky fractal in Fig. 1b and another fractal in Fig. 1c (Landau
and Paez, 1997) appear visually to occupy gradually more space, and
this is consistent with their calculated fractal dimensions (indicated
in Fig. 1).

In the present study we use the concept of fractal dimen-
sion to address the common scientific issue of the dimensionality
of data—even if the data are, strictly speaking, not fractals. Data
dimensionality is usually investigated by principal component
analysis (PCA) or factor analysis (Gorsuch, 1983), but not with frac-
tal dimension. The latter is normally used only if the analyzed
objects are already known to have (or are expected to have) frac-
tal properties (e.g., a chaotic attractor) (Strogatz, 1994). However,
this need not be the case. Much insight about datasets commonly
used in scientific research (e.g., those that are described typically
by the general linear model—GLM) can be gained by investigat-
ing the dimensionality of non-fractal data with fractal dimension
(Lutzenberger et al., 1992; Pereda et al., 1998; Woyshville and
Calabrese, 1994).
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Fig. 1. The concept of fractal dimension, its measurement, and the proposed analysis steps necessary to investigate how well a model of a dataset accounts for the data’s
fractal structure. (a) Example Koch fractal and the process of its creation through iterative steps. (b) Sierpinsky (triangle) fractal with dimension larger than that in (a). (c)
A fractal obtained through diffusion-limited aggregation of particles undergoing a random walk (Landau and Paez, 1997). The corresponding dimensions of fractals, D, are
indicated. (d) The procedure for computing the fractal dimension is illustrated for three objects with true D-values = 1–3. The space occupied by the object is partitioned into
‘boxes’ of size d. The number of resulting boxes that intersect (or cover) the object, N, is counted. Finally, N is plotted against the size d in a log–log plot (right panel). If the
object is a fractal, the plot results in a straight line and the slope of the line indicates the dimension of the object. (e) The dimensionality analysis of the data consists of two
tracks. In one, the fractal structure of the original data is calculated and in the other, the fractal structure of data reconstructed from the model is calculated (in all examples
we use GLM). Finally, the two structures are compared (e.g., by comparing their log–log plots).

1.2. Measuring fractal dimension

Fractal dimension is formally computed by one variant of the
Hausdorf dimension, DH (Falconer, 2003). The principles of this cal-
culation are shown in Fig. 1d by a variant of Hausdorf dimension
known as box-counting method. Here, with a change in the analy-
sis scale, d, a different number of boxes, N, is needed to cover the
object. For example, for one-, two-, and three-dimensional objects
in Fig. 1d (left panel) the counts are 2, 4, and 8 for d = 1/2 and 3,
9, and 27 for d = 1/3, respectively. The dimensions of the objects
are then calculated by plotting ln(d) versus ln(N) and calculating
the absolute values of the slopes of the fitted straight lines (right
panel). Therefore, the dimension DH is the absolute value of the
exponent in N ≈ d−D, describing how quickly the count N grows
with the decrease in d.

In the present study we estimate fractal dimensions by a
numerical procedure that is more computation-effective than box-
counting methods and that is known as the correlation dimension,
DF (Camastra and Vinciarelli, 2002; Grassberger and Procaccia,
1983). In most cases, DF produces identical results as DH (within
numerical limits) while in other cases DF < DH, the differences
being very small. Thus, DF can be considered a lower estimate
of D. Numerical details for the calculation of DF are provided in
Section 2.

Central to our analyses are the log–log plots such as the one
shown in Fig. 1d. For successful application of the method, it is
not necessary that the data exhibit the actual properties of fractals.
Fractals produce a straight line in the log–log plot (self-similarity)
while plots for the data might have curvatures (changes in the
slope). Curvatures provide important information about alterations
in data dimensionality across different scales, indicating that the
data are not simple fractals but could be instead described as mul-
tifractals, which can in turn lead to the discovery of interesting data
properties (e.g., Feder, 1988, pp. 185–186). One important applica-
tion is the comparison between the log–log plots for the original

data and those for samples recreated by a model of the data. This
allows one to test, in a novel way, how well the model accounts
for the original data (for the present analyses only GLM models are
tested, Fig. 1e). An example application to real data is made for local
field potentials (LFP), simultaneously recorded with 16 electrodes
from cat visual cortex.

2. Materials and methods

2.1. Experimental procedures

Intracranial LFP recordings were performed on an adult cat
under anesthesia induced with ketamine and maintained with
halothane and a mixture of N2O (70%) and O2 (30%). The cats were
paralyzed with intravenously applied pancuronium bromide (Pan-
curonium, Organon, 0.15 mg kg−1 h−1). LFP activity was recorded
from area 17 with 16-channel silicon probes (organized in a 4 × 4
spatial matrix) which were supplied by the Center for Neural Com-
munication Technology at the University of Michigan (Michigan
probes). The inter-contact distances were 200 !m (0.3–0.5 M!
impedance at 1000 Hz). Signals were amplified 1000× and filtered
1–100 Hz to extract local field potentials (LFP) (1 kHz sampling
rate). To evoke visual responses drifting sinusoidal gratings were
presented on a 21 in. computer screen (100 Hz refresh rate) using
ActiveSTIM software for visual stimulation (ActiveSTIM, high preci-
sion stimulation tool, http://www.ActiveSTIM.com). One stimulus
condition is presented in total 20 times. More details on methods
for data acquisition can be found in (Biederlack et al., 2006).

2.2. Artificially generated data

The artificial datasets shown in Fig. 2a–c (2000 points each)
were generated by a help of a Mersenne Twister pseudo random-
number generator (Matsumoto and Nishimura, 1998). In Fig. 2a
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Fig. 2. The dimensionality of artificial datasets, each consisting of three-variables, are investigated with PCA and with fractal dimensionality. (a) Four different correlation
patterns that satisfy the assumptions of GLM. All variables were either fully independent (‘ball’), or only two were fully dependent (Pearson’s correlation r = 1.00; ‘disk’), or all
were correlated with r ∼ 0.60 (‘egg’), or all were correlated with r = 1.00 (‘line’). The histograms in the center indicate the eigenvalues of the PCA-components after varimax
rotation. The log–log plot on the right-hand side indicates the dimensionality for the four respective datasets. (b) Three variables with a strong non-linear relationship forming
a ‘bowl’-like shape (Original) and the data scatter reconstructed after a GLM description of the original data (Reconstructed). (c) Data that have both one- and two-dimensional
structure obtained by positioning the points on a spiral running along the surface of a spindle. The beginnings and the ends of the regions in the log–log plots that were used
to compute the values of DF are given by the positions of the symbols indicating the corresponding datasets. Black bars: PCA-components above a significance threshold and
subjected to varimax rotation. Grey bars: the loadings of PCA-components below the significance threshold (non-rotated).

all scatter-clouds were generated with three normally distributed
(Gaussian) variables under the assumption of homoscedasticity,
and were correlated to a different degree. In Fig. 2b, the quadratic,
non-linear ‘bowl’ distribution was obtained by the formula
z = 4 + (x2 + y2)/3.5 where z, x and y are the three variables. In
Fig. 2c the data that form a shape of a spiral with expanding and
contracting radius (a ‘mandrel’ shape) were created accord-
ing to the formulas: y = cos (2" × 0.065x) × sin(2" × 5x), and
z = cos(2" × 0.065x) cos(2" × 5x). The pseudo-data for the ques-
tionnaire about beer quality were taken, with permission,
from an SPSS tutorial on factor analysis (principal components
analysis—SPSS; http://core.ecu.edu/psyc/wuenschk/MV/FA/PCA-
SPSS.doc).

2.3. Data analysis

The analysis steps made for all artificial and real data in the
present study are shown in Fig. 1e. Prior to the analysis, all
data are normalized to z-scores (mean = 0; standard deviation,
S.D. = 1). The data are either directly analyzed for fractal struc-
ture or the data are reconstructed from a GLM. In the latter case,
Pearson correlation coefficients are first computed. Then, by mak-

ing a Cholesky decomposition of the correlation matrix (Bock and
Krischer, 1998) with routines from The GNU Scientific Library
(http://www.gnu.org/software/gsl/), we reconstruct the dataset
with the properties assumed by the model (e.g., normal distri-
bution, homoscedasticity). The resulting scatter-clouds are shown
in Figs. 2b, c and 3 in red color (For interpretation of the ref-
erences to colour in this text, the reader is referred to the web
version of the article.). The fractal structures (i.e., log–log plots)
of reconstructed data are then compared to those of the original
data.

The correlation dimension, DF, uses a somewhat different
approach for finding scale-versus-count relationships than the box-
counting method. Instead of counting the number of boxes that
cover a certain object, DF is based on a count of pairs (xi,xj) of points,
that belong to the object and can be bound within spheres of a cer-
tain size, ı (Grassberger and Procaccia, 1983). This count is known
as the correlation integral and is theoretically given by:

C(ı) = lim
n→∞

1
n2 |{(xi, xj), where|xi − xj| < ı and i (= j}|

For a set of n empirical measurements, n2 pairs are being consid-
ered for the count. If the analyzed object has a fractal structure,
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Fig. 3. Dimensionality of datasets consisting of larger number of variables. (a) Fictitious reports to a questionnaire on beer quality (7 variables, 200 data points). (b) Eight
seconds of multi-channel recordings of LFP signals from cat visual cortex (7977 data points). In (a) and (b), all scatters are plotted for only three variables, while the
dimensionality analyses were made for all 16 variables. The results for PCA analysis are shown only for the six factors with largest loadings. The organization of the plots and
the notation are the same as in Fig. 2. (c) Temporal evolution of correlation dimension and entropy along an experimental trial during which a grating stimulus is presented.
(Left panel) Correlation dimension computed for all 16 channels at two different scales and for non-overlapping time windows 500 ms in duration. (Right panel) Entropy of
the system computed for all possible groups of six channels and averaged subsequently (the corresponding y-scale is shown on the right). Vertical lines: standard deviation
estimated from 20 stimulus repetitions (trials). Thick vertical dotted lines indicate stimulus onset (at 1 s) and offset (at 5 s).

C(ı) can be approximated by a power law: C(ı) ≈ ıD, DF being
given by the slope of a line in an ln(C(ı)) versus ln(ı) plot. Note
that due to the definition of DF, the lines in the log–log plots of
Figs. 2 and 3 have positive slopes rather than negative as in the
theoretical plots of Fig. 1d. Also note that both DF and DH are
positive quantities (dimensionality measures). Fractal dimensions
were estimated separately for segments of the log–log plots that
showed approximately constant slopes. The present methods for
the estimation of fractal dimension are related to previous ones
used for measuring fractal dimensions of electroencephalographic
(EEG) signals. Lutzenberger et al. (1992) used hypercubes for count-
ing the number of embedded points at different scales, Woyshville
and Calabrese (1994) counted circles with increasing radii that had
to cover the EEG traces, while Pereda et al. (1998) used a modified
version of the correlation integral.

To compare fractal dimensions to the classical measures of
dimensionality, we also compute PCA for each dataset. All PCA
analyses were made with varimax rotation applied after the selec-
tion of factors with significant loadings. For this selection we
used the criterion that the eigenvalue (total explained variance)
should exceed the threshold of 0.5 for data with three variables
or the threshold of 1.0 for data with more than three vari-
ables. PCA was computed using the Open Computer Vision Library
(http://www.intel.com/technology/computing/opencv/).

Our multichannel recordings provided multi-dimensional
datasets directly. Thus, in the present analysis we did not have to use
Taken’s embedding theorem to reconstruct the phase space from

a single variable, as it has been done in some other analyses (e.g.,
Andrzejak et al., 2001; Liebovitch, 1988, p. 212). Our approach was
expected to give more reliable results because it did not suffer (or
suffered to a much lesser degree) from various issues such as an
inappropriate choice of the embedding parameter ‘lag’, lack of sta-
tionarity or smoothness in the data, and the need for an excessively
large number of data points to estimate the embedding dimension
reliably (Liebovitch, 1988; Osborne and Provenzale, 1989). Another
advantage of avoiding attractor reconstruction is that there is no
need to generate surrogate data and test statistically whether the
time-series contains potentially multi-dimensional structure that
cannot be explained by a linear stochastic stationary process, usu-
ally Gaussian (e.g., Andrzejak et al., 2001; Schreiber and Schmitz,
2000). All presently discussed analyses assume that the multiple
variables are measured simultaneously and hence, that the phase
space is accessible directly.

We also compared the measures of fractal dimensionality with
those of entropy. To compute entropy of the 16-channel signals, we
first turned each continuous LFP into discrete values of 1 s and 0 s,
depending on whether the measured voltage for a given sample
had a value above or below the zero-line, respectively. The zero-
line was estimated as the gross average of the signal over the entire
recording period. Across all 16 signals recorded simultaneously this
procedure would produce a 16-bit pattern for each sampling point
and hence, a maximum of I = 216 = 65,536 different patterns could
be generated. With sufficiently long recordings, for each pattern
i (where {i ∈ 1, . . ., I}) the probability of occurrence, pi, could be
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estimated. The entropy, S, of the system is then computed simply
as:

S = −
∑

i

pi log(pi).

Given the 1 kHz sampling rate, 1000 sample patterns would be
obtained per one second. In practice, this was not sufficient to esti-
mate the probabilities for all the 16-bit patterns because, to detect
the changes that might have occurred as a function of the various
stimulus events along the trial, we needed to calculate entropy in
a time-resolved manner, using short windows of 500 ms length. As
a consequence, the large dimensionality of the 16-channel system
became a particularly strong limitation. Therefore, we needed to
limit our analysis to the number of channels that allowed accu-
rate estimates of the probabilities with a number of samples that
totaled only 500 samples/trial × 20 trials = 10,000 samples. Hence,
the probabilities, pi, could be calculated reliably only with about 6
channels at a time (26 = 64 patterns). To calculate the entropy for a
16-channel dataset, we averaged entropies obtained for all possible
6-channel subsets (in total 8008 combinations).

3. Results

3.1. Fractal structure of data satisfying GLM assumptions

We first investigated the fractal structure of three-dimensional
data that were generated under the assumptions of GLM. To this
end, we created four different datasets and applied PCA and frac-
tal analysis (Fig. 2a). There are two important findings. First, all
datasets showed straight lines in the log–log plots (the slopes of the
lines stayed constant across different ıs), indicating that the data
satisfying GLM assumptions can sometimes have dimensionality-
properties similar to those of fractals. As we will show later, this is
not always the case.

The second finding was that the slopes in log–log plots did not
always match the dimensionality estimated by PCA. In the extreme
examples, having all variables correlated with r = 0 or r = 1 (see Sec-
tion 2.2 and Fig. 2a, ‘ball’ and ‘line’), the match was good (i.e., a
three-factor PCA was associated with DF = 2.98 and a one-factor
PCA with DF = 0.99). Also, for the case with two perfectly correlated
variables and one uncorrelated (Fig. 2a, ‘disk’), PCA revealed two
factors, in agreement with DF = 1.96. However, when the variables
had more realistic correlations of r = 0.6 (Fig. 2a, ‘egg’), only one
significant factor was found by PCA while fractal analysis indicated
larger dimensionality (DF = 2.92). Therefore, the results of fractal
analysis are not straightforward given the known GLM properties
of the data, indicating that the former provides different and thus,
complementary information to that of the latter.

3.2. Non-linear data

An interesting case for illustrating data-to-model comparisons
are the deviations from model assumptions. In the case of GLM,
this can be made by introducing non-linear relationships between
variables. In Fig. 2b a two-dimensional dataset is curved in a
three-dimensional space forming a shape of a bowl. PCA indicates
incorrectly that the data have three dimensions and so is the case
for the fractal analysis of a GLM-reconstructed dataset (DF = 2.98).
Only the fractal dimension of the original data reveals the true
two-dimensionality of the data (DF = 1.98).

In Fig. 2c an even more interesting case of a non-linear rela-
tion in the data is introduced. Here, the data points are located
on a spiral (a one-dimensional object) that runs around the sur-
face of an imaginary spindle (a two-dimensional shape), resulting

in a ‘mandrel’-like shape. In this case, a scatter-plot for any pair
of variables is hardly distinguishable from scatters that satisfy
GLM assumptions (not shown). Consequently, both the factor load-
ings of PCA and the fractal dimension of GLM-reconstructed data
(DF = 2.88) indicate three dimensions (incorrectly). However, the
analysis of the fractal structure of the original dataset reveals the
geometric properties of the data much more accurately. This analy-
sis shows both underlying dimensions of the data: at smaller scales,
the analysis suggests that the data are one-dimensional (DF = 1.01)
and at larger scales, the slope of the log–log plot changes into a
two-dimensional structure (DF = 2.01), correctly describing the real
geometric structure of the data.

3.3. Application to realistic datasets

The examples in Fig. 2 used data that either fitted ideally GLM
assumptions or had perfect non-linear properties (i.e., no mea-
surement errors). In practice however, data will not have such
properties exclusively but will instead combine different features.
The two datasets in Fig. 3 are examples of such, more realistic cases,
in which a satisfactory match to GLM is achieved only at large scales
while, at small ones, the data depart from GLM assumptions.

In Fig. 3a, 200 hypothetical subjects have been asked to
grade seven qualities of beer (cost, size, alcohol, reputation, color,
aroma and taste) on a scale 0–100 in steps of five (Wuensch,
2005; principal components analysis—SPSS; http://core.ecu.edu/
psyc/wuenschk/MV/FA/PCA-SPSS.doc). The cloud-scatter (plotted
only for three out of seven variables) shows a much more sparse
structure than that of the GLM-reconstructed data. This differ-
ence could be tracked to the poor measurement resolution of
the questionnaires: due to the discrete nature of the variables
(taking values with increments of 5), many measurement points
overlapped—resulting in a sparse scatter. The analysis of frac-
tal structure has captured this difference in a form of strong
reduction in the data dimensionality at small scales: while at
large ıs, the original and reconstructed datasets had very simi-
lar dimensionalities (DF = 2.00 vs. 2.04), indicating high suitability
for GLM-representation, at small ıs, the two measures strongly
disagreed. At small scale, the reconstructed dataset increased its
dimensionality to about double the value at the large scale (i.e.,
DF = 4.43 compared to 2.00), indicating that GLM does not neces-
sarily have the fractal property of self-similarity across different
scales (as was the case in Fig. 2a). In contrast to this increase in
the dimensionality, the decrease in ı resulted in a reduction of the
dimension of the original dataset, first to ∼1 and then to 0 (indi-
cating complete overlap in data points). PCA analysis suggested the
dimensionality of two, which was only consistent with the fractal
estimates of data-dimensionality at large scales.

Our most important example application of fractal analysis is
to LFP data recorded from cat visual cortex in response to visual
stimulation. In Fig. 3b we show the analysis of a data-segment with
a length of about 6 s and recorded across 16 electrodes positioned
along a regular grid 600 !m × 600 !m in size. The dimensionality
analyses (both DF and PCA) were made with all 16 electrodes while
only the first three channels are shown in the scatter plot. The scat-
ter plot reveals a rich structure that has many details and varies in
the properties across scales but also across positions in space. In
some cases the plot suggests line-like trajectories (with a dimen-
sionality close to 1), while in others, it suggests highly dense knots
of what appears to be a complex structure. The scatter plot of the
reconstructed data indicates that this rich structure is not captured
well by GLM already at the three-variable level and this is confirmed
by the analysis of fractal structure at the level of all 16 variables. The
reconstructed data show the typical monotonic change in dimen-
sionality (slope) from larger (DF = ∼13) to smaller (DF = ∼9) with an
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increase in ı. At large scales the two types of datasets had relatively
similar dimensions (DF = 6.3 vs. 7.81), indicating that correlations
based on GLM described well the properties of the data at the global
level (e.g., the amount of variance shared by the variables).

When looking into more detail (smaller scales) large differ-
ences in dimensionality could be found. For small scales (ln(ı) < 0),
GLM-reconstructed data could not be measured because of insuf-
ficient number of data points. Below a certain scale (ln(ı) < 1),
GLM-reconstructed data had a constant, very high dimensional-
ity (DF = 12.76; still less than the maximum of 16 dimensions),
while the dimensionality of the original data first dropped to a
very small value (DF = 1.65). This low dimensionality most likely
reflects the temporal dependencies in the LFP signals that produce
a trajectory-like behavior in scatter plots—a feature of the signal
that is not assumed by GLM but that is detectable by our frac-
tal analysis. Finally, with further decrease in ı, LFP signals show
again an increase in dimensionality (DF = 8.71). This high dimen-
sionality for very small changes in the voltage of LFPs reflects the
complex ‘knots’ of the activity seen in the scatter plot. PCA analysis
is totally uninformative regarding this rich structure, as it sug-
gests that a single factor explains most of the variability in the
data. Moreover, the dimensionality of LFP signals is not necessar-
ily stationary over time. In Fig. 3c we show that the correlation
dimension can change along experimental trials as a function of
the stimulus dynamics. Here, a transient but strong drop in DF is
observed following onset and offset of a sinusoidal grating stimu-
lus. Therefore, fractal analysis can extract a lot of information that
is not accessible to GLM. The results indicate that, in the case of
LFPs, GLM produces a rather incomplete picture of the true prop-
erty of signals. In other words, we can say that, by the criteria
of fractal dimension, GLM is not an appropriate model for LFP
data.

3.4. Comparison to a measure of entropy

It is to be expected that a decrease in fractal dimensionality is
concomitant with a decrease in the entropy of the data. We cal-
culated entropy across the simultaneously recorded LFP-signals
by estimating the frequencies of the binary patterns generated
by the zero-crossings of the electrical signals (see Section 2 for
details). The comparison of the results to those of fractal dimen-
sionality indicated that the two measures provided similar results
(Fig. 3c, right panel). The stimulation periods that had smallest
fractal dimensionality had also smallest entropy, suggesting relat-
edness in the type of information probed by these two measures.
This was supported further by the inability of the data recon-
structed by a GLM to reproduce, at least in some cases, the entropy
of the original data (results not shown).

4. Discussion

We have shown that measures of fractal dimension can be
applied to multivariate data that are not fractals and that, by
doing so, one can extract important information about the prop-
erties of the data. In this analysis, the dimensionality of the data
is investigated across different scales. A change in dimensional-
ity is indicative of a change in the data’s geometric properties, the
detailed identification of which might require further analysis steps
(e.g., inspecting scatter-plots or phase diagrams). As a result, the
present method can help to discover relationships between vari-
ables that could not be discovered by other, standard methods (e.g.,
GLM). Here, small fractal dimensions suggest correlations between
variables and large dimensions can, but do not have to, indicate
noise.

The present method is also suitable for testing whether models
of the data account for (fit) the geometric properties of the data.
We illustrate this point by using GLM only, but an application to
any other type of model would be identical: the fractal structure of
the original data needs to be compared to the fractal structure of the
data reconstructed from the model of the data. A mismatch allows
us to detect the scale at which the model and the data disagree. In
the case of GLM, this allows us to detect, for example, non-linear
relationships in the data.

It is important to note that the present analysis method is not
free of assumptions, as it assumes that data have spatio-temporal
stationarity (Woyshville and Calabrese, 1994), i.e., the geometric
properties of the data are similar across different locations in the
state-space. If data clearly violate this assumption, one might con-
sider applying the analysis only over the parts of the state-space
that exhibit stationarity or, in time-series, applying a time-resolved
analysis (as we have done).

Importantly, information obtained from the numeric analy-
sis of dimensionality is highly consistent with the relationships
observable in scatter-plots (phase diagrams). The advantage of the
numeric methods is that the dimensionality can be quantified and
can be probed for spaces that exceed grossly the maximum of three
dimensions that can be visualized in graphical representations (in
our case, up to 16 dimensions). We have also shown that frac-
tal dimensionality provides information related to the complexity
of a system assessed by entropy. Higher dimensionality is associ-
ated with higher entropy. However, this does not mean that the
two provide identical information or that entropy can be consid-
ered a replacement for fractal dimensionality. Accurate assessment
of entropy in many cases requires prohibitively large number of
samples. In addition, entropy does not normally provide informa-
tion associated with the analyses at different scales in the way
provided by fractal dimensionality. Advanced methods for estima-
tion of entropy can also incorporate some scale-based information,
which is usually defined in the temporal dimension. For example,
multiscale entropy (Costa et al., 2005) applies first a ‘coarse grain-
ing’ of the time-series using time-windows of a given size (scale)
and then computes entropy using techniques less sensitive to the
size of the dataset, such as sample entropy (Richman and Moorman,
2000). Thus, entropy measures can complement the analysis of
fractal dimensionality in cases in which the temporal scale is an
important factor. For applications in which the amplitude of the
signal is most relevant, fractal dimension should be the method of
choice for determining the complexity of a dataset.

The highly dimensional knots of small changes in voltages (small
scales) in our analyses are not likely to reflect noise. Instead,
their sporadic nature and intermittent exchange with the periods
of smooth, large changes in voltages may reflect computation-
ally relevant events that establish new phase relations between
the signals and/or mark new stages in the processing of the
stimulus.

The analysis of dimensionality is also important as an estimate
of the brain’s ability to represent information. A state of very low
dimensionality (i.e., low entropy) would indicate that the system
lacks the degrees of freedom necessary to represent information
(e.g., Schneidman et al., 2003), which would then also prevent its
processing. Thus, if the system is not able to assume a variety of dif-
ferent states, the computational flexibility is lost, which means loss
of brain’s function. In the case of epileptic attacks the low dimen-
sionality (Babloyanz and Destexhe, 1986) may be even the cause of
the loss of consciousness. It is therefore, mandatory to understand
how the dimensionality of the brain activity changes as a function
of oscillations that are considered healthy and beneficial to infor-
mation processing (e.g., those in the beta/gamma range 20–80 Hz),
as a function of stimulus properties (e.g., those inducing strong and
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weak oscillations), and under different brain states (e.g., anesthesia,
sleep, awake, focused attention).

In conclusion, the present method should be useful for analysis
of multivariate data and in particular for those data that involve
relationships between a large number of variables. The method can
be used as a data-mining tool, as a tool for testing how well a model
accounts for the data, or as an estimate of the system’s ability to
represent information.
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