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Abstract

Cross-correlation histograms (CCHs) have been widely used to study the temporal relationship between pairwise recordings of neuronal signals.
One interesting parameter of a CCH is the time position of the central peak which indicates delays between signals. In order to study the potential
relevance of these delays which can be as small as 1 ms, it is necessary to measure them with high precision. We present a method for the estimation
of the central peak’s position that is based on fitting a cosine function to the CCH and show that the precision of this estimate can be tracked
analytically. We validate the resulting formula by simulations and by the analysis of a sample dataset obtained from cat visual cortex. The results
indicate that the time position of the center peak can be estimated with submillisecond precision. The formula allows one also to develop a test of

statistical significance for differences between two sets of measurements.

© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Cross-correlation histograms (CCHs) (Moore et al., 1966;
Perkel et al., 1967; Abeles, 1982; Aertsen and Gerstein, 1985)
have been widely used to study the temporal relations between
pairwise recordings of neurophysiological signals (Gray et al.,
1989; Roelfsema et al., 1997, Castelo-Branco et al., 2000). The
CCH for two spike trains is computed by counting the number
of coincident events that occur at different delays between the
signals up to a maximal delay, 7 (for an example see Fig. 1A).
A center peak indicates that two cells tend to fire spikes simul-
taneously. Center peaks can be also shifted up to several tens of
milliseconds (Konig et al., 1995), which then indicates that the
spikes of one cell tend to be delayed relative to the spikes of the
other cell. As these shifts are often associated with oscillatory
activity (indicated by the satellite peaks in Fig. 1A), we refer
to them as “phase offsets”. The goal of the present study was
to develop a method with which one could measure phase off-
sets with high precision (i.e., 1 ms or smaller) and to equip this
method with an estimate of the error of measurement.

In the past, phase offsets smaller than one or two milliseconds
have been considered unimportant and thus practically equiva-
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lent to zero offsets (Roelfsema et al., 1997). However, the finding
that neurons can coordinate their responses with millisecond ac-
curracy (Reinagel and Reid, 2002; Jones et al., 2004; Ikegaya et
al., 2004) suggests that even small phase offsets in CCHs may
reflect important aspects in cortical information processing. It
is therefore important to determine whether small phase offsets
can be distinguished confidently from zero offsets and whether
two sets of phase offsets differ from each other significantly.

To this end, we propose to fit the central peak of the CCH
with a simple cosine function (Fig. 1B and D) and to use the
time at which this function reaches its maximum as the esti-
mate of the most frequent delay. This method is related to the
technique by Konig (1994), which is based on more complex
damped cosine (Gabor) functions. Those Gabor functions can
fit oscillatory CCHs very well (Fig. 1A and C) but do not al-
low one to directly assess the precision of the phase estimate.
The simple cosine function proposed here has fewer parame-
ters, which allows standardizing the starting values and makes
the fitting procedure objective. Most importantly, the error of
measurement can be tracked analytically.

We first describe the method used for fitting the central CCH,
the assumptions used for this fit and the rules for the appropri-
ate choice of the starting values (Section 2). Also, we compare
the phase offsets obtained by the cosine fit to those obtained by
the Gabor function (Konig, 1994). The main part of the paper
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Fig. 1. Example CCHs and fitted Gabor and cosine functions. (A) An example
of a CCH between two multi-unit recordings computed over 20 trials, each
2000 ms in duration (7 = 80 ms). Black: original time resolution (1/32 ms);
grey: CCH smoothed with a 2 ms kernel. (B) The central part of the CCH in A
for T = 10 ms. (C) Gabor function fitted to the CCH in A. (D) Cosine function
fitted to B. Vertical lines: ¢ = 0.

(Section 3) deals with the statistical properties of the phase es-
timate derived from the cosine fit. We first present an analyti-
cally derived formula to estimate the variance with which the
phase offset can be measured. We then compare the theoretical
formula with the variance obtained from simulations (Section
4), investigate whether the formula can describe the empirical
variability of the phase estimate and examine the possibility to
create confidence intervals for the estimated phase shifts. The
validation of the formula also includes an analysis performed on
a sample dataset based on neuronal responses to different visual
stimuli recorded simultaneously from 14 channels of multi-unit
activity in cat area 17 (for details on experimental methods see
Appendix A). We estimate the error with which phase offsets are
measured in this dataset and evaluate the precision with which
our formula can assess this error. Finally, we use the formula to
design a significance test that enables investigating changes in
phase offsets across two groups of paired measurements.

2. Estimating phase offsets with the cosine fit

The phase offset ¢ is estimated by fitting a cosine function
to the central part of the CCH. The cosine function was chosen
due to the clear interpretation of its parameters ¢, A and w, the
phase offset, the amplitude and the frequency, and By, the offset
at the ordinate of the CCH (for an illustration see Fig. 2A).

We assume that an experimentally observed CCH results
from an additive composition of a cosine and random error. This
error is assumed to be normally distributed with zero mean and
the same standard deviation o at each data point in the CCH
(illustrated in Fig. 2B), and independent across different data
points. Thus, the observed number of coincidences, CCH;, at
time shift ¢ can be described as

CCH; = Bo + Acos(w(t — ) +0Z;, Vi=-T,...,T,
(1)

where all Z; are independent and standard normally distributed
random variables scaled by o. Independence and normal dis-

T 0 .
(A t (B) t

Fig. 2. The assumptions of the cosine model. (A) The four parameters that define
the cosine function: phase offset ¢; amplitude A; frequency @ and offset at the
ordinate, fSy. (B) Deviation between the cosine and the CCH is assumed to be
independent and normally distributed with variance o and zero mean.

tribution of errors seemed to be suitable assumptions because
the empirically derived residuals were largely uncorrelated and
approximately Gaussian (distribution of residuals shown in
Appendix B).

To find the parameter values that fit a particular CCH best,
we use the Gauss—Newton method implemented in the statistical
analysis tool R (http://www.r-project.org). This method finds the
values for all four parameters of the cosine (w, A, ¢ and Bp) that
minimize the least-squares error. The parameter o represents
the variance of the residuals, i.e., the mismatch between the CCH
and the fitted cosine function and is therefore estimated after the
fitting procedure.

We applied this method to our dataset and used standardized
starting values for the iterative algorithm. As phase shifts were
usually small (< 2 ms), the initial value of ¢ was always set to
0. The initial value of A was always set to 1, and that of w to
the oscillation frequency that roughly corresponds to the width
of the center peaks in the CCHs (in our case 45 Hz). The initial
value of By was chosen to be the mean count of coincidences in
the CCH. This value was sufficiently close to 8 because the fitted
parts of the CCHs usually covered about one cosine period.

The fitting procedure was highly robust against changes in the
starting values of the parameters. The starting value of @ needed
to be sufficiently different from half or double the underlying
oscillation frequency. The starting value for By needed to be far
enough from the minimal observed height in the CCH because
the procedure may otherwise reach a local minimum and return
a cosine function with double the period and amplitude. Overall,
our experience was that CCHs are easier to fit with cosine than
with Gabor functions.

We also investigated whether the shifts obtained by the cosine
fit are comparable to those resulting from a Gabor fit with the
method of Konig (1994). The phase estimates obtained by the
two methods when fitting 91 CCHs from the sample dataset are
shown in Fig. 3. Phase estimates based on cosine and Gabor
fit agreed to a high degree as indicated by the scatter along the
main diagonal and by the high correlation between the two sets
of measurements (r = 0.97).

3. Precision of measurement

A thorough investigation of phase offsets requires an esti-
mate of the precision with which these phase offsets can be
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Fig. 3. Phase estimates obtained by fitting Gabor and cosine functions to 91
CCHs computed from the sample dataset.

measured, especially when they are as small as those in Fig. 3
(i.e., |¢| < 2.2 ms). The simple form of the cosine Eq. (1) allows
the derivation of an explicit formula for the approximate vari-
ance of the phase estimate that can be applied directly to assess
the measurement error of the phase estimate. The mathematical
idea is also known as ‘error propagation’ or ‘delta-method’, and
the details can be found in Appendix C. It turns out that an ap-
propriate parameterization of the resulting formula is given by
the terms

Y _ wy

2T T
= and f:=— = w—,
p 2r p b4

where s denotes the shift of the cosine expressed as a proportion
of one cosine period p, and f denotes the fitted part of the CCH,
expressed as a fraction of the cosine period. The variance of the
phase estimate can then be approximated by the formula

— 1
Var(p) = EV(N’ o, A)G(s, f), 2
where
VN0 ) = 20 3
( , 0, )— W, ( )
cosZ(27s) sin2(27rs)
G(s, = 4
=5 T o @
and
1 sin2rf)
Di(f) =1 EETTI
. 2 2 . 2
Dagpy =1 4 D2l ®

Thus, the approximate variance of ¢ can be described by two
components. The first part, 1/w?V, describes its dependence on
the parameters w, N, o and A. According to the formula, Var(®)
decreases (i.e., the precision increases) with the frequency, w,
because a shorter period of the cosine leads to a narrower center
peak. The precision also increases with an increase in the number

N
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(A) Visible fraction of period, f
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Fig. 4. Influence of f on the precision of the phase estimate. The graphs are
plotted for constant w, o, and A and for ¢ = 0. (A) G(0, f) = 1/D is plotted
as a function of ffor constant N. (B) Decrease in variance (increase in precision)
as a function of f.

of data points within the fitted part of the CCH, N, and with a
decrease in the variability, o, relative to the amplitude of the
cosine function, A.

The second part, G, describes how the variance of the phase
estimate depends on the geometric parameters s and f. To un-
derstand the dependence of G on f, we first investigate G for
s =0, i.e., for CCHs centered at zero (Fig. 4A). The graph of
G(0, f) = 1/D1(f) oscillates around 1 and approaches 1 in the
limit. The oscillation occurs because the information about the
position of the peak carried by each data point is higher at the
edges of the cosine function than at its maxima or minima. If s
is bigger, then the geometric term G accounts for the fact that
the visible part of a shifted cosine function is asymmetric with
respect to the window defined by &=7'. Hence, the right and the
left side of the window contribute different amounts of informa-
tion about the size of the shift. This asymmetry is accounted for
by Egs. (4) and (5).

One should note that Fig. 4A describes only the dependence
of the geometric term, G, 0an If one wants to infer about the
dependence of the variance Var(() on f, one has to take into ac-
count that the term V also changes with f because an increase
in the visible fraction of the period also increases the number
of data points, N, if the timg/resolution is kept constant. The
dependence of the variance Var(() on fis shown in Fig. 4B for
constant o, w and A and for ¢ = 0. Var(¢) does not oscillate
but decreases continuously with growing f, the slope indicating
the amount of information that is added by the respective data
points. Thus, although the extremes of the cosine function con-
tribute less information than the edges, every data point adds
information about the position of the peak. Unfortunately, one
cannot take advantage of this property by using the maximal
possible analysis window because the side peaks of a CCH usu-
ally do not continue the cosine function fitted to the central peak.
Thus, the fitted area of the CCH should in practice not be much
larger than one period of a cosine. In our dataset, the choice of
T =10msledto f ~ 1.

4. Scope of the variance formula

We investigate the applicability of the formula for the vari-
ance of the phase estimate in situations in which two assumptions
used in its computation are not necessarily met. First, the sim-
plicity of Eq. (2) is based on the assumption that the oscillation
frequency, w, is known beforehand, which is not the case in prac-
tice. Second, it is not clear whether the number of data points,
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Fig. 5. Distributions of the parameters of the cosine fitted to experimental data. The estimates of o/ A, fand s were obtained by fitting a cosine function to the sample

dataset, and their distributions are shown in A, B and C, respectively.

N, that result from the chosen 7 and the given time resolution is
sufficiently large to justify the asymptotic approximations un-
derlying the formula. Finally, the simulations are also performed
to investigate whether the practical use of Eq. (2) is affected by
the fact that, in practice, only estimates of the parameters are
available.

The applicability of the formula to center peaks that are
known to originate from noisy cosine functions is tested by
simulations with experimentally derived parameter sets for the
original time resolution (Section 4.1) and for lower time resolu-
tions resulting from binning (Section 4.2). Finally, we compare
the experimentally obtained variability in our sample dataset
with the predictions of the formula (Section 4.3) in order to
investigate whether it can be used to assess the expected vari-
ability of the estimate ¢ and to determine confidence intervals
for ¢.

4.1. Simulations

The simulation procedure was as follows: For a cosine func-
tion with the parameters s, fand o, add independent and normally
distributed noise with mean 0 and variance o to each of the N
data points. Fit a cosine to the resulting function by estimating
¢, A, o0 and w by the nonlinear least squares method described
in Section 2. Finally, use Eq. (2) to estimate the variance of the
phase estimate, o(%.

The parameters used to generate surrogate CCHs were de-
rived from the experimental dataset. We used the original time
resolution (1/32ms) and 7 = 10 ms, resulting in N = 640. Fig.
5 shows the distributions of f; s, and o/ A as estimated from all
91 CCHs of the responses to one stimulation condition (condi-
tion 1, see Appendix A). These empirically derived parameter
values were used to simulate surrogate data by using all possible

combinations of the values from the following sets:
0 €{05,1,1.5,2}, f€{09,1,1.1, 1.2},
s € {0, 4%, 8%}, 6)

while A was always set to 1.

We performed 10,000 simulations for each parameter set.
The resulting distribution of the estimates ¢ for a typical param-
eter set (f = 1.1, s = ¢ =0, 0 = 1) is shown in Fig. 6A. The
empirical standard deviation o of the phase estimate for this
parameter set was 0.17 ms. This value was used to validate the

— 1/2
approximate formula (2). We used 6y := (Var(@)) to esti-

mate the standard deviation of the phase estimate and computed
the root mean squares (RMS) error, i.e., the typical deviation of
the estimates 63 from the empirical o, expressed in % of 0p:

Zi(aé) — 0p)?
(10000 — 1)

100%

9

(N

The estimates of o obtained by Eq. (2) deviated from the
empirically derived value by about 6.5% on average (Fig. 6B).
Thus, the formula predicted well the empirically obtained vari-
ation of the phase estimate for the typical parameter set.

Analogous results can be obtained when varying o in the
set {0.5, 1, 1.5, 2}. Fig. 6C shows the values of the empirical
oy (points) and the RMS error of the estimates 6y (error bars)
for the parameters f = 1.1,s = 0ando/A € {0.5, 1, 1.5, 2}. As
predicted by Eq. (3), the standard deviation of the phase estimate
grows linearly with o/ A, the slope being dependent on the par-
ticular set of parameters. For the chosen value of f = 1.1, the
slope is 0.17 ms per unit of o/ A, which results in a typical mea-
surement error of oy ~ 0.2 ms for a typical value of 6/A = 1.2.
The slopes for f = 0.9 and 1.2 were 0.19 and 0.16 ms per unit of
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Fig. 6. Comparison of the formula for the variability of the phase estimate, 6, to the variability obtained in simulations, 0. (A) Distribution of estimated phase
offsets in 10,000 simulated CCHs with parameterso = 1, A = 1, f = 1.1 and s = 0. 0 = 0.17 indicated by arrows. (B) Distribution of 63 derived by application of
Eq. (2) to 10,000 simulated cosine functions. Vertical line indicates empirical standard deviation, o = 0.17 (same parameters as in A). (C) The relationship between
o/ A and the empirical standard deviation of the phase estimate, o (f = 1.1, s = 0). Left y-axis indicates the standard deviation in % of a cosine period. Right y-axis
shows the same in ms for 7 = 10 ms. Error bars indicate empirical deviations of &3 from oy (Eq. (7)).
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and ¢ € [ — 264, ¢ + 26p] for all parameter combinations specified in (6) are
indicated by dots, whereas the expected values 68% and 94% are indicated by
solid lines.

o/ A, respectively (simulation results not shown). In addition to
the increase in the variability of the phase estimate, an increase
in 0/ A expectedly increased the typical error between the the-
oretically predicted variability, 6, and the variability obtained
empirically, oy (indicated by error bars in Fig. 6C). Similar re-
sults were obtained for the other values of s (s € {4%, 8%}).

These results suggest that Eq. (2) provides very good es-
timates of the variability of the measured phase offset in the
investigated parameter ranges and thus, that Eq. (2) can be used
to build confidence intervals for ¢. Fig. 7A shows that the cen-
tered and normed phase estimates (¢ — ¢)/6; obeyed very well
the standard normal distribution (Kolmogorov—Smirnov test,
p > 0.5). This implies that an approximate confidence interval
for ¢ at level « is given by [@ — 1%6(;,, o+ z%&;}]. This result
generalized for all investigated parameter sets and for the £1o
and £20 confidence intervals (Fig. 7B). The percentage of simu-
lations with ¢ € [ — 63, @ + 6p] and ¢ € [@ — 26, @ + 263 ]
agreed well with the theoretical percentages.

4.2. Binning

So far, all simulations were performed by using the same
time resolution as given by the sampling frequency of 1/32 ms.
However, in many practical applications CCHs are computed
by binning to lower time resolutions such as 1 ms (Gray et al.,
1989; Castelo-Branco et al., 2000). It is therefore important to
understand how the binning process affects the precision with
which the phase shift and its variability can be estimated.

Eq. (2) suggests that the actual precision of the phase estimate
remains unaffected if CCHs are binned with a bin size of up to
1-2 ms. This is because binning that averages counts reduces not
only the number of data points, N, but also the variability of data
points, o2, in such a way that the quotient o>/N remains con-
stant. However, with smaller N, o2 is harder to estimate. Thus,
although binning does not affect the precision of the estimated
offset, 0, it can affect the estimate of this precision, 6. To ad-
dress this question, we performed 10,000 simulations with the
typical parameter set {f = 1.1,A=1,0=1,s=0,T = 10}.
Every simulated CCH was binned with different bin sizes of
31—2, %, %, 1,2, 2.5 and 5ms and then fitted with a cosine func-
tion. The estimation precision of o was again quantified with

error of 6§ [%]
|

[ I I I I |
0 1 2 3 4 5

bin size [ms]

Fig. 8. The relationship between the size of the bins used to compute the CCHs
and the typical deviation (Eq. (7)) of the estimated variability of the phase shift
64 from the variability oy obtained in simulations.

Eq. (7). The deviation of 64 from oy increased with the bin size,
from 6.5% for the original time resolution of 1/32ms to 18%
for a bin size of 1 ms and to 61% for a bin size of 5ms (Fig.
8). Large deviations of 63 from oy may result in inappropriate
confidence intervals and thus in erroneous conclusions about the
statistical significance of differences between phase estimates.
These results suggest that one should not reduce the time res-
olution of the data by binning but should, whenever possible,
analyze phase offsets with the time resolution with which the
data were acquired.

4.3. Agreement with variability in experimental data

As the assumptions associated with the cosine model do not
necessarily hold true for the experimental data, it is necessary
to investigate the degree to which the approximate formula can
describe the variability of phase shifts obtained experimentally.
To this end, we subdivided the responses to 20 presentations (tri-
als) of the same visual stimulus into two subsets (odd and even
trials). For all 91 pairs (i, j) of recorded channels, CCHs were
computed separately for each of the two subsets of trials and
cosine functions were fitted to estimate phase delays. If phase
shifts remain stable with repeated stimulus presentations, the

difference of the two estimates D;; := @(11 ) Qg) should be dis-

tributed normally with mean O and variance 20(%l_j. To investigate

whether the estimates of the phase, @fjl ) , and of its measurement
error, 6(%” , derived from the odd trials yield a reliable confidence

interval for the phase measurement gbg) in the even trials, we es-
timated o(%ij from the odd trials for every channel pair (i, j) and,
as the sign of Dj; is irrelevant, compared the distribution of the
absolute values

~() _ ~(2)

1@ii" — &5

ﬁa@ij

for all 91 CCHs to the non-negative part of the standard normal
distribution.

1Zijl =
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Our results showed very close correspondence between the
predicted and the observed distribution (Fig. 9, Kolmogorov—
Smirnov test, p > 0.5). This suggests that Eq. (2) grasps the
variability of ¢ in the experimentally obtained CCHs very well
and thus that this formula can be used to estimate the error with
which phase offsets are measured.

5. Application: a significance test

In the preceding sections we showed that Eq. (2) reasonably
describes the measurement error of the phase estimate not only
for the simulated data but also for CCHs obtained from the exper-
imental dataset. Therefore, we can use these error estimates to
determine the statistical significance of the differences in phase
shifts that come from different pairs of channels or from the
same pair under different stimulation conditions. We propose a
statistical test that can be used to investigate changes in phase
offsets for entire groups of measurements simultaneously, thus
avoiding multiple comparisons.

Consider two sets of measurements S; := {(p(ll), R (pﬁﬁ}

and S ;= {<p§2), el

@2} in which the measurements ((p;l),
<p§2)) are paired exactly like the measurements (p?}) and (pg) de-
rived from odd and even trials in Section 4.3. We assume that
every measurement (p}k) (k = 1, 2) has normally distributed mea-

surement error with zero mean and its own variance O’z(k). The
@

1
latter can be estimated with Eq. (2). If the associated pairs of
measurements have the same expected values, the test statistic
n (1) 2
N e

X.

: ) 2

0%y +07 0
@ %

®)

=1

is (approximately) the sum of squares of » normally distributed
random variables and thus has an approximate y2-distribution
with n degrees of freedom (x%(n)). In contrast, if some pairs
of measurements differ more than one would expect from the
size of their variances, X grows, which then results in smaller
p-values.

Table 1
Application of the statistical test to two stimulation conditions from our sample
dataset which included n = 91 phase offsets in each set of measurements

Comparison X P
Odd-even trials, condition 3 89.8 0.516
Odd-even trials, condition 5 104.1 0.165

Conditions 3-5 285.0 < 0.0001

As an example, we applied this test to our experimental
dataset (conditions 3 and 5; see Appendix A) to investigate
whether the test indicates changes in the sets of n = 91 measured
phase shifts when neuronal responses are evoked by identical or
different stimuli (Table 1). To investigate responses to identical
stimuli the 20 presentations of the same stimulus were again di-
vided into two sets of odd and even trials, while the comparison
between stimulation conditions was based on all 20 trials.

The results of this analysis are shown in Table 1. The large
p-values (0.516 & 0.165) indicate that phase shifts do not change
across odd and even trials of the same stimulation condition by
more than is accounted for by their measurement errors. In con-
trast, the small p-value (p < 0.0001) indicates that the observed
differences between measured phase shifts in conditions 3 and 5
are unlikely to originate from identical distributions. This appli-
cation illustrates how the proposed test can be used to investigate
temporal dynamics in neuronal activity by making statistical in-
ferences about the stability and changes of phase shifts across
stimulation conditions.

6. Discussion

We presented a method that can be used to estimate spiking
delays between pairs of units based on fitting a simple cosine
function to the central part of a CCH. The simplicity of the fitted
function allows the derivation of a formula for the variability
of the shift estimate. This formula can be computed easily and
explains how different parameters of the CCH affect the preci-
sion with which phase offsets are measured. We could show that
the formula accounts very well for the variability of the phase
estimates in simulated CCHs and also that it predicts accurately
the error with which phase offsets are measured in the experi-
mental dataset. Therefore, our results suggest that the proposed
method can reliably estimate phase offsets together with their
measurement errors.

The application of the method to the experimental dataset in-
dicated that phase offsets can be measured with high precision.
We obtained an average standard deviation of a phase estimate
of about 0.2 ms, which yields 95% confidence intervals of about
0.8 ms. This suggests that phase offsets can be measured with
submillisecond precision and thus, that small phase offsets (e.g.,
1 ms) can often be distinguished from zero-offsets with confi-
dence. Therefore, the proposed method can be used to investigate
whether these offsets change dynamically in a task dependent
way and thus, whether they contain information that might be
relevant for cortical processing. The proposed statistical test can
assess the difference between two paired sets of phase measure-
ments and thus, can be helpful in such investigations.
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Eq. (2) indicates that the precision of phase estimates depends
on the parameters of the CCH. We investigated its performance
for a range of parameters that was derived from our dataset.
This range does not necessarily cover all possible values. For
example, since our dataset included multiunit activity with rel-
atively high firing rates, an application of the method to single
units with low firing rates might involve different parameter
ranges, and the noise around the cosine might not be Gaussian
distributed. It might also be necessary to bin CCHs prior to the
fitting procedure, in which case one should take into considera-
tion the decrease in the precision with which the measurement
error can be estimated.

The high precision with which phase offsets can be measured
does not imply that phase offsets are stationary over the entire
response window that is used to compute the CCH. For example,
summation of two CCHs with different phase offsets can result
in an intermediate offset that could also be determined with high
precision. The presence of central peaks in un-normalized CCHs
also does not imply precise neuronal synchronization but can re-
flect rate covariation between two signals (Perkel et al., 1967;
Brody, 1999). In this case, the time offset of the peak represents
the temporal delay of the rate covariation and is likely to require
a window size, 27, that is much larger than 20 ms. Finally, the
present methods are not exclusively applicable to CCHs but can
be useful for any data analysis that requires assessing the posi-
tions of peaks in any dataset that complies with the assumptions
of the present model.

In conclusion, the cosine fit and the associated formula for
the measurement error of the phase shift can provide a useful
tool for the analysis of phase offsets in CCHs. Thus, the pro-
posed methods can be used to investigate temporal properties
of neuronal responses and their role in cortical information pro-
cessing.
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Appendix A. Methods for data acquisition
A.l. Preparation

The cat was initially anesthetized with ketamine, and the
anaesthesia was maintained with a mixture of 70% N, O and 30%
O; supplemented with halothane (0.4-0.6%). The animal was
paralysed with pancuronium bromide (Pancuronium, Organon,
0.15mgkg~! h~"). All the experiments were conducted accord-
ing to the guidelines of the Society for Neuroscience and Ger-
man law for the protection of animals, approved by the local
government’s ethical committee and overseen by a veterinarian.

A.2. Recording

Multi-unit activity (MUA) was recorded from a region of area
17 corresponding to the central part of the visual field by using a
SI-based multielectrode probe (16 channels per electrode) sup-
plied by the Center for Neural Communication Technology at
the University of Michigan (Michigan probes) with inter-contact
distance 200 wm (0.3-0.5 M2 impedance at 1000 Hz). Signals
were filtered between 500 and 3.5 kHz for extracting multi-unit
activity (MUA), digitized with 32 kHz sampling frequency and
stored in computer memory. All analyses were made on the ba-
sis of discrete spike events detected by a threshold that was set
to a value of about two times the noise level. The probe was in-
serted in the cortex approximately perpendicular to the surface
and allowed simultaneous recording from neurons at different
cortical depths and along an axis tangential to the cortical sur-
face. Fourteen MUA signals showed good responses to visual
stimuli, orientation selectivity and overlapping receptive fields
(RF). This resulted in a cluster of overlapping RFs that were
stimulated simultaneously by a single visual stimulus.

A.3. Visual stimulation

Stimuli were presented binocularly on a 21” computer screen
(HITACHI CMS8I13ET) with 100Hz refresh rate. To obtain
binocular fusion the optical axes of the two eyes were first de-
termined by mapping the borders of the respective RFs and
then aligned on the computer screen with adjustable prisms
placed in front of one eye. The software for visual stimula-
tion was a commercially available stimulation tool, ActiveSTIM
(http://www.ActiveSTIM.com). The stimuli consisted either of
one white bar moving over a black background or consisted of
two bars moving in different directions (60° difference). The
bars always appeared at about 3° eccentricity of the center of
the cluster of RFs and moved with a speed of 1°/s such that they
completely covered the cluster of RFs. In the stimuli with two
bars, the bars crossed their paths at the center of the RF cluster.
At each trial the stimulus was presented in total for 5 s, but only
2 s with strongest rate response were used for the analysis. In
the six stimulation conditions the bars moved in the following
directions (1) 30° and 330°; (2) 0°; (3) 150° and 210°; (4) 180°;
(5) 30° and 150°; (6) 210° and 330°. Each stimulation condition
was presented 20 times, different conditions being presented in
a randomized order. In the present study only the conditions 1,
3 and 5 were used for the analyses.

Appendix B. Distribution of residuals

To investigate the distribution of the residuals, a cosine func-
tion was fitted to each CCH as shown in Fig. B.1A, and the
distribution of the residuals (Fig. B.1B) was compared to a nor-
mal distribution by application of a Kolmogorov—Smirnov test.
The distribution of the resulting p-values for all 91 CCHs in
stimulation condition 1 is shown in Fig. B.1C. For data that con-
form with the model assumptions, the distribution of p-values
is expected to be uniform on the interval between 0 and 1. The
obtained p-values range within the whole interval from O to 1,
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Fig. B.1. Analysis of residuals. (A) An example CCH (gray) with a fitted cosine function (black). (B) Distribution of residuals from A (histogram) and normal
distribution curve superimposed (black). P-value indicated at the upper left results from a Kolmogorov—Smirnov test. (C) Distribution of p-values obtained from the
application of the Kolmogorov—Smirnov test to the distributions of residuals resulting from all 91 CCHs in stimulation condition 1.

with only a slight tendency towards smaller values. Thus, the
normal distribution was considered appropriate to model the
residuals in the present dataset. Independence of residuals was
investigated with serial correlation up to a lag of 10 ms. Absolute
values of correlation coefficients stayed mostly below 0.2 (data
not shown).

Note that residuals can be considered independent only if the
CCH is computed on the basis of counts of discrete spike events
determined by a threshold criterion. If in contrast, CCHs are
computed directly on the filtered MUA signals, dependencies
between residuals could be introduced. This is because, if the
low-pass filtering frequency is below the Nyquist frequency that
results from the digitization rate, adjacent data points of the
MUA signal are dependent.

Appendix C. Mathematical derivation of the asymptotic
variance

In step 1 we use trigonometric identities to transform the
cosine Eq. (1) into a linear combination and express ¢ in terms
of the coefficients 81 and B,. In step 2, the variance of these
coefficients is derived with linear regression analysis, which in
the final step 3 allows the derivation of the variability of the
phase estimate by linear approximation of the nonlinear relation
between ¢ and the two coefficients, 8 and .

Step 1: ¢ as a function of 81 and 8>

A cos(w(t — ¢)) = Alcos(wy) cos(wt) + sin(we) sin(wt)]

= B cos(wt) + B> sin(wt) (C.1)

with  cos(wgp) = B1/A and sin(we) = Br/A. (C.2)

o (B T
This yields ¢ = — arcsin n for |wy| < 5 (C.3)
w

1 . (B2
and ¢ =sgn(p) | T — — arcsin | — for
w A

bid
| € b,n}. (C.4)
We only compute the variance of the term in Eq. (C.3), because
the variances of the estimates in (C.3) and (C.4) are identical.
Step 2: Approximate variances of 81 and B>

The approximate variances 012 and a% of §1 and B, are given

by
-1
) , (C.5)

(C.6)

sinQwT)  2sin*(wT)
20T w?T?

> -1
Proof. We use linear regression analysis to determine the coef-
ficients 81 and £, and their asymptotic variances. Let m denote
the time resolution (number of bins per time unit), —7 and 7 the
borders of the CCH, and N := 2mT the number of data points
in the CCH. Let furthermore

2 varin=22 (14
o7 .= var =—
1 1 N

20

2 .
a% = Var(,BAz)iW (1 — M

and
20T

xi=—-T+G—1)/m (@G=1,...,N)

denote the time shifts for which coincidences are counted in the
CCH. Thus, the continuous variable ¢ is replaced by discrete
steps x;. Combining Egs. (1) and (C.1), we get that the value of
the CCH at x; can be written as

Y; := CCH(x;) = Bo + B cos(wx;) + B2 sin(wx;) + 0Z;,
(C7

where Z;,i = 1,..., N denote independent random variables
with standard normal distribution. We express Eq. (C.7) in ma-
trix notation

Y = XB+oZ,

where Y=(Y19 cee YN)/, Z:Z(le cee ZN)/’ ﬁz(ﬁ()s ﬁlv ﬁ2)/s
and the ith row of X is given by X; ) := (1, cos(wx;), sin(wx;))
foralli =1, ..., N. The distribution of B is known from linear
regression analysis:

BN (,8, (x/X)—laz) .

We compute (X’ X)~! and get

5 A 02N
o1 = Var(f) = 5 (C.8)
N> cos?(wx;) — (3 cos(wx;))
2
O'% = Var(,éz) = m (C9)
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As N is usually large, we replace the sums in (C.8) and (C.9)
with their asymptotic integrals:

N T
2 2 N
E cos“(wx;) — m/ cos“(wx)dx = > [1 +
-T

i=1

sin(2wT)
20T

N T N
Z cos(wx;) —> m / cos(wx)dx = — sin(wT)
—-T oT

i=1

N T .
N sinwT
E sinz(a)xi) — m/ sinz(wx)dx =—|1-— & .
i1 -T 2 20T
The proof is then concluded by replacing the respective terms
in Egs. (C.8) and (C.9) with their approximate values. [

Step 3: Approximate variance of ¢

202

Var(w@)=—— <COS2(w<p) <1 —

sinQwT)\ !
NAZ2

2wT

—1
sinRwT)  2sin*(wT)
20T W?T?

+ sinz(a)(p) (1 +

#starting values

This implies

)i (v 52)
Var<A> ﬂ%_i_ﬂ%\/ar 1+,3222

y (1 _ Bio1Z +,320'222>>
B3+ B3
Y , B 2<1_ B )2
_ﬁ%+ﬁ%<al(ﬁ%+ﬁ§)2+02 B B+8) )
(C.12)

Inserting the right hand side of Eq. (C.12) into Eq. (C.10) and
replacing B, B2, o1 and o> by the terms in Egs. (C.2), (C.5) and
(C.6) yields the claim. [

Computer code for fitting a cosine

In order to apply Eq. (2) to a CCH, one can use the fol-
lowing code. The CCH must be stored as an array of integers,
CCH, of length N, containing the coincidence counts. The time
lags for which coincidences are counted are stored in the ar-
ray x. With the publicly avaliable statistical analysis tool R, the
commands

st < —list (A=1,phi=0,w=.3,b0=mean (CCH))

#computation of estimates

estimates < —coef (nls (CCH~A x cos (wx* (x-phi))+b0), start=st))

Proof. Eq. (C.3) tells us that wg = arcsin (82/A). We use the
fact that one can approximate arcsin(x) locally, i.e., around
B2/ A, by a linear function

arcsin(x) ~ arcsin(B2/A) + (arcsin(B2/A)) (x — B2/ A)

Thus, the variance of arcsin(f4,/A) can be approximated by

Var(arcsin($>/A)) ~ Var(8,/A). (C.10)

1
1= /A2
To approximate the variance of fy/A, we rewrite
Bi = Bi +0iZ;, where Z; is standard normally distributed

(i=1,2). Due to (C.2), (B1/A)* + (B2/A)* =1 and thus,
A = (B + B3)!/2. Therefore,

Var <ﬁ2> — Var ( ot 0222 ) (C.11)
A V(B1 +01Z1)2 + (B + 022,)2

Now we transform the denominator into a term of the form
+/1 4+ x and approximate 1/+/1 4+ x in x = 0 by the first two
terms of the Taylor expansion, 1 — %x. For large N, aiZ de-
creases at the order of 1/N and thus, is negligible as com-
pared to o;, which decreases only at the order of 1 /«/ﬁ.

can be used to fit the cosine and estimate the parameters, which
are then stored in the array estimates and can be retrieved with

A < —estimates[1l]; phase < —estimates[2];
w< —estimates[3]

For Matlab, a similar routine is available:

f=@ (pars) norm(pars (1) *x cos(pars(3) *
(x-pars(2)))+pars (4)-CCH) ;

estimates= fminsearch(f, [1;0;0.3;

mean (CCH) 1) ;

A=estimates(1l); phase=estimates(2);
w=estimates (3);

In both packages, the standard deviation of the residuals can
be obtained with the function sd (), and the variance of the
phase estimate can be computed directly by insertion of the
estimates into Eq. (2). Complete source codes for the gen-
eration of a surrogate CCH, the fitting of a cosine function
and estimation of the variance of the phase offset, including a
plotting routine, can be downloaded from http://ismi.math.uni-
frankfurt.de/schneider/GSDNO5_code.

References

Abeles M. Quantification, smoothing, and confidence limits for single-units’
histograms. J Neurosci Methods 1982;5:317-325.


http://ismi.math.uni-frankfurt.de/schneider/GSDN05_code

106 G. Schneider et al. / Journal of Neuroscience Methods 152 (2005) 97-106

Aertsen AMH]J, Gerstein GL. Evaluation of neuronal connectivity: sensitivity
of cross-correlation. Brain Res 1985;340:341-354.

Brody CD. Correlations without synchrony. Neural Comput 1999;11:1537—
1551.

Castelo-Branco M, Goebel R, Neuenschwander S, Singer W. Neural syn-
chrony correlates with surface segregation rules. Nature 2000;405:685—
689.

Gray CM, Konig P, Engel AK, Singer W. Oscillatory responses in cat visual
cortex exhibit inter-columnar synchronization which reflects global stimulus
properties. Nature 1989;338:334-337.

Ikegaya Y, Aaron G, Cossart R, Aronov D, Lampl I, Ferster D, Yuste R. Synfire
chains and cortical songs: temporal modules of cortical activity. Science
2004;304:559-564.

Jones LM, Depireux DA, Simons DJ, Keller A. Robust temporal coding in the
trigeminal system. Science 2004;304:1986-1989.

Konig P. A method for the quantification of synchrony and oscillatory properties
of neuronal activity. J Neurosci Methods 1994;54:31-37.

Konig P, Engel AK, Roelfsema PR, Singer W. How precise is neuronal synchro-
nization? Neural Comput 1995;7:469-485.

Moore GP, Perkel DH, Segundo JP. Statistical analysis and functional in-
terpretation of neuronal spike data. Annu Rev Physiol 1966;28:493—
522.

Perkel DH, Gerstein GL, Moore GP. Neuronal spike trains and stochastic
point processes. II. Simultaneous spike trains. Biophys J 1967;7:419—
440.

Reinagel P,Reid C. Precise firing events are conserved across neurons. J Neurosci
2002;22:6837-6841.

Roelfsema PR, Engel AK, Konig P, Singer W. Visuomotor integration is as-
sociated with zero time-lag synchronization among cortical areas. Nature
1997;385:157-161.



	Detection and assessment of near-zero delays in neuronal spiking activity
	Introduction
	Estimating phase offsets with the cosine fit
	Precision of measurement
	Scope of the variance formula
	Simulations
	Binning
	Agreement with variability in experimental data

	Application: a significance test
	Discussion
	Acknowledgements
	Appendix AMethods for data acquisition
	Preparation
	Recording
	Visual stimulation

	Appendix B Distribution of residuals
	Appendix C Mathematical derivation of the asymptotic variance
	References




