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ABSTRACT
Synchronous oscillations are believed to be important for
neuronal information processing. We use a stochastic mo-
del for parallel point processes to estimate the strength of
synchrony in an oscillating network of neurons recorded
in cat visual cortex. The model has the surprising abil-
ity to predict interactions between the neurons solely on
the basis of the individual processes, i.e., the autocorrelo-
grams. The strength of synchronization is defined as the
mismatch between the predicted and the observed strength
of interaction. This method has the advantage of distin-
guishing changes in the strength of synchrony from chang-
es in the properties of the underlying processes. Thus, the
model provides new approaches for the investigation of
dynamical changes in the joint oscillatory activity of neu-
ronal networks.

1. INTRODUCTION

The synchronization of oscillatory neuronal responses is
likely to play an important role in cortical processing and
is commonly investigated using pairwise cross-correlation
histograms (CCHs; [1], Figure 1).

In a CCH, one uses either the height, the width or the
area of the central peak to investigate the amount of syn-
chronous firing. Such measures are then evaluated statis-
tically by comparing to independent processes [2, 3, 4].
However, this null hypothesis of independent processes
is insufficient to describe the nature of processes with a
common oscillatory rhythm. Therefore, such methods can
only indicate statistically significant deviations from inde-
pendent processes and can thus be only related indirectly
to the properties of the underlying processes.

In the present work, we use a stochastic spike-train
model [5] that describes the oscillatory properties of the
underlyingprocesses andmakes simple assumptions about
their interactions. Therefore, the model offers a frame-
work for relating the properties of individual processes,
visible in the auto-correlation histograms (ACHs; [6]), to
the properties of interactions between the processes, vis-
ible in CCHs. This allows for a direct measure of syn-
chrony, which we will define here as the percentage of
spike pairs that take part in the same rhythm.

time [ms]
   

   
 U

ni
t

Parallel spike trains

0 100 200 300 400

4
3
2
1

# 
co

in
cid

en
ce

s ACH

delay [ms]
0 40 80 −80 −40 0 40 80

CCH

delay [ms]

Figure 1. Parallel processes with a common oscillatory
rhythm, reflected in ACHs of individual processes and in
CCHs computed for pairs of processes (gray: raw counts,
black: counts smoothed with Gaussian kernel; sd= 1ms).

2. THE SPIKE-TRAIN MODEL

2.1. Model assumptions

We use a spike-train model for parallel point processes
called the ELO model (Exponential LOcking to a free os-
cillator), which is described in detail elsewhere [5]. The
model assumes a global oscillatory rhythm (called the pa-
cket onset process, POP), shared across all processes and
described by a stationary random walk (Bn)n∈Z with in-
dependent and normally distributed incrementsB i+1−Bi

with mean µ and variance σ2 (Figure 2, top line). An
event in the POP marks the time points at which the fir-
ing intensities rise for all processes simultaneously (cycle
onset). In each process j, an onsetBi gives rise to an inde-
pendent Poissonian spike packet with an expected number
of spikes αj and exponentially decreasing firing intensity
with time constant τj . With Bnt denoting the last onset
before t, the firing intensity of process j at time t is de-
scribed by

αj

τj

nt∑

i=−∞
e

−(t−Bi)
τj + βj . (1)
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Figure 2. The ELO model for two parallel processes: The
global POP with N (µ, σ2)-distributed increments gives
rise to simultaneous spike packets with exponentially de-
creasing firing intensities with parameters τ1 and τ2, re-
spectively. The corresponding theoretical CCF shows a
central peak and an oscillatory shape.

The smaller τj , the more densely the spikes cluster at the
packet onsets (Figure 2, τ1 < τ2). Since the POP is shared
by all processes, µ and σ are global parameters. In con-
trast, α and τ may differ across units.

2.2. Cross-correlation function

Within this framework, the auto- and cross-correlation func-
tions (ACF, CCF) of processes that complywith the model
assumptions can be derived by decomposition of the pro-
cesses into different packets (Figure 2, bottom panel). The
CCF Fab(s) at shift s ≥ 0 between processes a and b is
then given by (for a proof see [5])

Fab(s) =
αaαb

µ(τa + τb)

{
e−

s
τa

+
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e
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+
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∑
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where Φ denotes the standard normal distribution func-
tion. Fab(s) = Fba(−s), and the ACF of a equals Faa.

2.3. Relation between ACF and CCF

It follows that the CCH can be predicted directly from the
properties of the individual ACHs because it depends on
the same parameters. The smaller τa and τb, the higher
the respective ACH peaks, and the higher also the corre-
sponding CCH peak.

This relation can be quantified with the first term of
the CCF, αaαb/(µ(τa +τb))e

− s
τa , which describes the in-

tensity of spike pairs that belong to simultaneous packets
and thus, determines the shape of the central peak. Since

the level of the asymptotic baseline in a CCF is given by
the product of the firing intensities, αaαb

µ2 (Figure 2), the
fraction fh of the total peak height cut at baseline level is
given by

fab
h =

baseline
peak height

=
τa + τb

µ
, (3)

and by f aa
h = 2τa/µ in ACFa. Thus, the simple relation

fab
h = 1/2 · (faa

h + f bb
h ) (4)

shows the direct relation between the height of the CCH
peak and the respective ACHs peaks. We will use this
relation to estimate the degree to which two processes are
locked to the same oscillatory rhythm.

3. FITTING THE MODEL TO A DATA SET

3.1. Parameter estimation

We fitted the ELOmodel to a sample data set consisting of
neuronal firing activity of 14 multi-units recorded in par-
allel in cat primary visual cortex under visual stimulation
(stimuli are shown in Figure 7, see [7] for experimental
methods). We first estimated the times of the global cy-
cle onsets by smoothing the firing activity of all units with
a Gaussian kernel. Packet onsets were identified as the
points at which 60% of the maximum was reached (gray
dots in the upper panel of Figure 3). This analysis sug-
gested that independence and normal distribution of inter-
vals between spike packets were appropriate assumptions
for the POP. We then estimated the parameters by fitting
the theoretical ACFs (Equation (2)) to the observed ACHs
using a nonlinear least squares algorithm. As mentioned,
µ and σ were chosen to be identical in all units. The fitted
ACFs correspondedwell to the empirical ACHs (Figure 3,
bottom panel). For stimulation condition 1, the parameter
estimates were µ̂ = 25.3 ms, σ̂ = 7.3 ms. The values
of τ̂1, . . . , τ̂14 were in the range of 3.5 − 8 ms. Approxi-
mations for variances of the parameter estimates were de-
rived both numerically by the least squares algorithm and
by splitting the data into smaller groups. Both methods
yielded comparable results, with standard errors smaller
than 0.1 ms for µ and σ and 0.1− 0.9 ms for τ1, . . . , τ14.

3.2. Prediction of interactions

With the parameters derived from the ACHs, we predicted
the shape of each CCH by using Equation (2). In many
cases, this prediction corresponded well to the empirically
obtained CCH (Figure 4).

In some cases, the units showed nonstationary rate re-
sponses within trials that were different in both units (Fig-
ure 5, left panel). As a consequence, the observed CCHs
were lower than those predicted from the ACHs (medium
panel). Therefore, nonstationarity was taken into account
by using a correction factor proposed in [5]: We described
the firing rate of a unit as a step function, which we esti-
mated from the overall firing rate across all trials, mea-
sured in windows of 200 ms (bold curves in the left panel
of Figure 5). With the given rate estimates λ1,a, . . . , λk,a
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Figure 3. Investigation of model assumptions and param-
eter estimation. Upper panel: The spikes recorded in the
14 units show a joint oscillatory rhythm that can be de-
scribed by independent and normally distributed intervals.
Bottom: The observed ACHs (colors as in Figure 1) cor-
respond well to the fitted ACFs (medium gray).
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Figure 4. Observed CCHs (colors as in Figure 3) and the-
oretical CCFs (medium gray) predicted from the parame-
ters derived from the corresponding ACHs.

and λ1,b, . . . , λk,b, the raw CCF prediction uses the prod-
uct of the firing rates estimated from the ACHs,

α̂aα̂b =

√∑

i

λ2
i,a

√∑

j

λ2
j,b. (5)

However, the correct prediction would be

r =
∑

i

λi,aλi,b. (6)

We therefore corrected each predicted CCF with the term

cab = r/α̂aα̂b. (7)

Most correction factors ranged between 0.9 and 1 and re-
sulted in good agreement between the predicted and the
empirical CCHs (Figure 5, right panel).
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Figure 5. Nonstationary rate responses along a trial need
to be corrected when predicting a CCH. Left panel shows
firing rates of units 4 (light gray) and 5 (dark gray)
recorded in 20 trials in stimulation condition 1. Direct pre-
diction leads to an erroneous height of the CCH (medium
panel), which can be corrected with Equation (7).

4. THE DEGREE OF UTILIZED SYNCHRONY

A good agreement of the CCF predictions with some of
the empirically obtained CCHs suggests that the model
assumption about all units sharing the same oscillatory
rhythm describes the data well. Therefore, this predic-
tion can be used as a reference: The CCF predicted from
the ACHs indicates the maximal possible strength of syn-
chrony that can be obtained for the given pair of units.
This predicted maximum depends on the ACHs in the fol-
lowing way: If ACHs have small peaks, the predicted
CCH will also have a small peak and vice versa.

This perspective allows one to define the strength of
utilized synchrony, which is the degree to which the ob-
served CCH peak corresponds to the peak predicted under
the above assumption that the units share the same rhythm
(100% locking). Indeed, a number of CCHs showed lower
peaks than predicted from their ACHs (Figure 6, bottom
right panel). This indicates that the units utilize less than
100% of their potential to synchronize, indicating in turn
that oscillation shared across units is weaker than the os-
cillation of each unit individually.

Within the spike-train model, utilized synchrony can
be estimated as follows (Figure 6, upper panel): We as-
sume that the units share the same POP only sometimes
(A), while on other occasions they are locked to indepen-
dent POPs with the same parameters (B). The resulting
CCH is a linear combination of the CCF predicted from
the ACHs (black curve in the second panel) and a flat cor-
relogram resulting from independent processes:

CCH = ϑ · CCFpredicted + (1 − ϑ) · baseline. (8)

The parameter ϑ indicates the percentage of spike pairs
that share the same oscillatory rhythm. This number can
be estimated with a least squares approach when compar-
ing the predicted CCF to the observed CCH. When apply-
ing this measure to stimulation condition 1, the estimates
of ϑ ranged between 0.4 − 0.9, with standard errors of
about 0.03. Analogous results were obtained for the other
stimulation conditions.
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Figure 6. If a predicted CCF is higher than the observed
CCH, this could indicate that some spikes share the same
rhythm (A), but others engage in independent rhythms
(B). Such a combination (C) reduces the CCH amplitude
and allows estimating the fraction of spikes in the same
rhythm (utilized synchrony, bottom, colors as Figure 3).

4.1. Changes in utilized synchrony across stimuli

This method allows one to investigate whether the degree
of utilized synchrony changes across stimulation condi-
tions. Even if ACHs do not change and thus the potential
to synchronize is constant, it is possible that units change
utilized synchrony. This directly affects the CCH peak
and can thus account for classical results based on mea-
sures of the peak height [4]. For example, we found that
utilized synchrony was increased for a stimulus with one
moving bar, as compared to two conflicting bars (Figure
7), which is consistent with previous reports, e.g. [8].

However, it is also possible that utilized synchrony
provides a different kind of information than the classical
measures. An indication of such information is shown in
Figure 7 where utilized synchrony could distinguish be-
tween two groups of units, Group A (orientation prefer-
ence 30◦/ 210◦) showing much higher utilization of the
potential to synchronize for stimulus 5 than Group B (ori-
entation preference 150◦/330◦), while Group B synchro-
nized more strongly in stimulus 6. The functional signifi-
cance of these results is yet to be investigated. However, it
indicates that utilized synchrony might provide important
information about the dynamics of neuronal oscillation.

5. DISCUSSION

We use a stochastic model that describes parallel processes
with a joint oscillation and that can predict a CCH di-
rectly from the ACHs. By comparing the observed and the
predicted CCHs, we propose to estimate to which degree
units utilize their potential to synchronize. This allows
one also to distinguish whether changes in a CCH are due
to changes in the individual processes or to changes in uti-
lized synchrony. The method may therefore provide new
information on the dynamics of neuronal synchronization.
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Figure 7. Changes in utilized synchrony across stimuli.
Utilized synchrony increases from stimulus 1 to 2 (upper
right). Bottom: Group A shows high utilized synchrony
in stim. 5, group B shows high synchrony in stim. 6.
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