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The analysis of neuronal information involves the detection of spatiotem-
poral relations between neuronal discharges. We propose a method that
is based on the positions (phase offsets) of the central peaks obtained
from pairwise cross-correlation histograms. Data complexity is reduced
to a one-dimensional representation by using redundancies in the mea-
sured phase offsets such that each unit is assigned a “preferred firing
time” relative to the other units in the group. We propose two procedures
to examine the applicability of this method to experimental data sets. In
addition, we propose methods that help the investigation of dynamical
changes in the preferred firing times of the units. All methods are applied
to a sample data set obtained from cat visual cortex.

1 Introduction

Cortical neurons can fire in precise temporal relation to each other, pro-
ducing repeatable spatiotemporal patterns (Mainen & Sejnowski, 1995;
Lestienne, 1996; Singer, 1999; Abeles, Bergman, Margalit, & Vaadia, 2000;
Reinagel & Reid, 2002; Ikegaya et al., 2004). A variety of methods has
been proposed and used for detecting and investigating such precise firing
patterns among large networks of neurons (for a review, see, e.g., Brown,
Kass, & Mitra, 2004). Each of these methods is tuned to detect specific
types of spatiotemporal relations, operating on different timescales, and
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Figure 1: Definition and data structure of phase offsets. (A) A phase offset
is defined as the time delay of the central peak’s maximum in a CCH. Inset:
Enlarged image of the CCH peak. (B) An illustration of the representational
complexity that originates from pairwise analysis. For only nine simultaneously
recorded units, 36 phase offsets are already measured.

each uses a different definition of what constitutes a pattern. For exam-
ple, some methods focus on coincident events (Gerstein, Perkel & Dayhoff,
1985; Martignon, von Hasseln, Grün, Aertsen & Palm, 1995; Grün, 1996;
Johnson, Gruner, Baggerly, & Seshagiri, 2001; Grün, Diesmann & Aertsen,
2002; Amari, Nakahara, Wu & Sakai, 2003; Schneider & Grün, 2003), while
others register events that are delayed (Abeles & Gerstein, 1988; Abeles,
1991; Ikegaya et al., 2004).

In this study, we propose a method for detecting a particular type of
spatiotemporal relations occurring between neurons with synchronized
discharges, as defined by the presence of a center peak in their raw cross-
correlation histograms (CCHs; Moore, Perkel, & Segundo, 1966; Perkel,
Gerstein, & Moore, 1967). The method starts with the computation of CCHs
between all pairs of spike trains and with the extraction of the center peak’s
positions by fitting cosine functions to the CCHs (for details, see Schneider
& Nikolić, 2006; for an alternative method, see König, 1994). A shift of the
center peak indicates that the two neurons tend to fire with a delay (see Fig-
ure 1A). If CCHs are associated with oscillatory activity (e.g., Gray, König,
Engel & Singer, 1989; Engel, Kreiter, König, & Singer, 1991), these delays are
also called phase offsets. Such delays are often small (2 ms or less) and thus
have been considered equivalent to zero delays (Roelfsema, Engel, König,
& Singer, 1997). However, we have shown in Schneider and Nikolić (2006)
that these small delays can be statistically different from zero and thus that
they can represent real temporal offsets between the firing events of pairs
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Figure 2: Additive and nonadditive spiking delays. (A) If the same spatiotem-
poral pattern among three units occurs repetitively (small jitter allowed), phase
offsets in the corresponding CCHs (a–c) are additive. (B) An example in which
spatiotemporal patterns are restricted to pairs of units and phase offsets are not
additive.

of neurons. As a consequence, it appears worthwhile to investigate such
delays within large data sets obtained in highly parallel recordings (com-
pare also to König, Engel, Roelfsema, & Singer, 1995; Traub, Whittington, &
Jefferys, 1997; Wennekers & Palm, 2000).

As Figure 1B illustrates, analyses of pairwise relations can become cum-
bersome when the number of neurons (units) in the data set increases. It
is thus necessary to decrease the representational complexity of such data
sets. The method presented here achieves this in the following manner.
Pairwise phase shift measurements (

(n
2

)
pairs for n neurons) are collapsed

into a one-dimensional representation that indicates the preferred time at
which each neuron fires an action potential relative to the firing times of all
other neurons. As a result, a complex data set is represented by a simple
one-dimensional temporal map, also called a linear configuration.

This procedure is appropriate only when certain conditions are satisfied.
The main precondition for a reduction of representational complexity is that
the phase offsets obtained from different pairs of units have the property
of additivity. That is, the offset that was measured between units A and C
should correspond to the sum of offsets between units A and B and units
B and C (illustrated in Figure 2A). If this condition is satisfied across the
entire data set, a simple summation method can be applied to estimate the
relative temporal positions of all units (see section 2). One should, however,
be cautious when using such an analysis because, as illustrated in Figure 2B,
additivity of phase offsets is not given by default. Therefore, the suitability
of the additivity assumption should be investigated for each data set; the
issues related to such tests are discussed in sections 2 and 3. Finally, phase
offsets might change due to functionally relevant variables such as changes
in stimulation conditions (e.g., König et al., 1995; Schneider & Nikolić, 2006)
or due to the shift in the focus of attention or a behavioral event. In section 4
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Figure 3: Linear configuration of three units on the time axis. If phase offsets
(p.o.) are additive, the relative times at which units prefer to fire can be repre-
sented by delays between points in one temporal dimension.

we propose methods that can be used to compare two sets of phase offsets
and investigate whether phase offsets change consistently across different
measurements.

2 Stochastic Model for the Extraction of Linear Structure

2.1 Assumptions and Estimates. We will first show how additivity can
be used to reduce the representational complexity of a set of phase offsets.
Phase offsets between the units A, B, and C are additive if the following
condition is satisfied:

ϕAC = ϕAB + ϕBC .

If this holds true for all subsets of pairs of units, the temporal relations
between all units in the data set can be represented precisely by positioning
all units on one temporal dimension (time axis). The position of a unit then
indicates its “preferred firing time” relative to the other units. The absolute
value of a phase offset can be read from the time axis as the distance
between two preferred firing times (see also Figure 3), and its sign indicates
the temporal order of the units on this axis.

Perfect additivity is not likely to be achieved in practice because even
additive phase offsets would be measured with an error. It is therefore
necessary to investigate how well one can represent the original phase
offsets by positioning the units on one time axis. To this end, we first identify
the most likely positions of the units on the time axis by using a maximum-
likelihood (ML) approach. Thus, the units are positioned such that their
pairwise distances (model distances) resemble the measured phase offsets
as closely as possible.

A canonical set of assumptions needed for such positioning is illus-
trated in Figure 4. Here, we assume that n units (1, 2, . . . , n) have positions
{x1, x2, . . . , xn} on the time axis. The positions have mean zero, and the
real delays between all unit pairs (i, j) are denoted by δi j := (xj − xi ). The
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Figure 4: Model assumptions. Units are represented as points on the time axis
with mean zero. The measured phase offset ϕi j of the distance δi j = (xj − xi )
between units i and j is associated with a normally distributed measurement
error σ Zi j with zero mean and variance σ 2.

measured phase offsets ϕi j are assumed to result as a sum of the real delays,
δi j , and normally distributed measurement errors, which are independent
across different phase offsets, have mean 0 and equal variances σ 2. Thus,
for all unit pairs (i, j) with 1 ≤ i < j ≤ n,

ϕi j = (xj − xi ) + σ Zi j ,

with independent Zi j ∼ N (0, 1). Note that there is only one phase offset for
each pair of units because ϕi j = −ϕ j i (i.e., the CCH between units A and B
is the mirror image of the CCH between units B and A).

Given those assumptions, the ML estimate of position xk of unit k on the
time axis can be computed as the normed sum of phase offsets between this
unit and all other units under investigation (for a proof, see appendix B.1):

x̂k = 1
n

∑
� �=k

ϕ�k . (2.1)

These estimates of unit positions remain unbiased even if the assumptions
of normality and independence of measurement errors are violated or if
the variances of different phase offsets are unequal. This is because the
expected value of the sum is the sum of expectations. Thus, the only effect
of the violations of model assumptions is that the estimates can no longer
be interpreted as ML estimates.
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From equation 2.1, it follows that the estimated model distance δ̂i j be-
tween the units i and j is

δ̂i j = x̂ j − x̂i = 1
n


2ϕi j +

∑
� �=i, j

(ϕi� + ϕ�j )


 . (2.2)

Thus, the model distance between the units i and j is estimated by a
weighted average of their direct distance and all indirect distances of paths
of length two. The direct measurement ϕi j contributes twice as much to this
weighted average as each indirect measurement ϕi� + ϕ�j . This accounts
for the fact that the direct estimate is affected by only one error of mea-
surement, while every indirect estimate is contaminated by two errors of
measurement.

The estimates x̂i in the resulting one-dimensional temporal map,
{x̂1, x̂2, . . . , x̂n}, minimize the sum of squares of differences between the
measured phase offsets ϕi j and the offsets estimated by the model, δ̂i j , that
is,

Q :=
∑
i< j

(ϕi j − δ̂i j )2 =
∑
i< j

(ϕi j − (x̂ j − x̂i ))2 != min .

This can be used to estimate σ 2:

σ̂ 2 = 1(n−1
2

) · Q. (2.3)

It can be shown that this estimate is unbiased—that it neither over- nor
underestimates σ 2 in expectation (see appendix B.2).

With equation 2.3, the measurement error is computed on the basis of the
agreement across phase offsets: the higher the degree of additivity among
a set of phase offsets, the smaller the estimated measurement error. We will
therefore also refer to the measurement error as the error of additivity. This
quantity can also be used to compute

σ 2
x̂ := Var(x̂) = (n − 1)

n2 · σ 2, (2.4)

which takes into account the error of additivity in order to indicate the
precision with which a unit can be positioned on the time axis.

Equation 2.4 still holds even if measurement errors are not distributed
normally. However, its utility can be affected if measurement errors are
dependent or if they have different variances. Dependence of measurement
errors will be discussed in section 4.2. If measurement errors have different
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variances, each unit has its own estimation error, and thus the global σ

from equation 2.3 represents only the average variability. In this case, an
estimate of the error can be computed for each individual unit k by using
the following equation:

Var(x̂k) = 1
n2 ·

∑
� �=k

σ 2
�k . (2.5)

This equation cannot be computed directly from a set of phase offsets but
requires that the individual variances σ 2

�k of the measurement errors are
estimated from a different source of information than the additivity error.
Thus, if the units do not differ strongly in their individual variances, it is
more practical to use the global estimate rather than the individual estimates
of the positioning error.

2.2 Application to a Sample Data Set. In this section we apply the
model to a sample data set that consists of multiunit activity recorded si-
multaneously from 14 electrodes in the cat primary visual cortex in response
to six different stimulation conditions (for details on experimental methods,
see appendix A).

For all CCHs in stimulation conditions 1 to 3, the positions of the center
peaks in the CCHs were estimated with high precision (∼1 ms) by using the
methods described in Schneider and Nikolić (2006). The position of each
central peak was determined by fitting a cosine function and extracting the
point at which it reaches its maximum. The resulting distribution of phase
offsets for all 91 pairs in stimulation condition 1 is shown in Figure 5A. The
corresponding distributions in conditions 2 and 3 were similar (data not
shown).

We positioned the units on the time axis by using equation 2.1 (see Fig-
ure 6A). The resulting positions span a total distance slightly larger than
2 ms. The consistency across the phase offsets, indicated by the global esti-
mate in equation 2.4 (additivity error: σ̂ 2 ≈ 0.04; σ̂ 2

x̂ ≈ 0.0026), is illustrated
by the width of the normal distributions drawn in black above each po-
sition. These suggest a high degree of separability between the preferred
times at which the units fire action potentials. For example, unit 2 is likely
to fire before unit 11, while the preferred firing times of units 7 and 10 seem
indistinguishable.

The precision with which the units’ positions can be estimated may differ
across units if the variances of the phase measurements differ across unit
pairs. Therefore, we also estimated the measurement errors for each indi-
vidual position by using equation 2 from Schneider and Nikolić (2006). This
equation describes analytically the precision with which a phase offset of a
CCH can be determined with respect to the variability of the coincidence
counts in the CCH, also taking into account the oscillation frequency and
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Figure 5: Distributions of 91 phase offsets (A) and the variances of their mea-
surement errors (B) obtained in response to two moving bars that cross at the
center of the receptive field (stimulation condition 1). Detailed description of the
stimuli is provided in appendix A, and the sketches of the stimuli are provided
in Figure 6.

amplitude of the central peak. The resulting histogram of estimated mea-
surement errors of phase offsets is shown in Figure 5B. Separate estimates
of σ 2

i j in equation 2.5 resulted in a small variability of the precision estimates
of the unit positions (minimum, σ̂ 2

x̂ ≈ 0.001 for units 5 and 8; maximum,
σ̂ 2

x̂ ≈ 0.007 for units 6 and 9). The normal distributions with their widths
and heights adjusted to correspond to the variances of individual positions
are added in gray above each unit position in Figure 6A. One can see that
the additional consideration of the differences in variances does not affect
strongly the separability between the units. Therefore, the general model
that uses only the global variance provides a reasonably accurate represen-
tation of the precision with which a unit’s position can be estimated. Hence,
for the remaining stimulation conditions 2 and 3, we show only the global
estimates of the variability (see Figures 6B & 6C).

To obtain further understanding of the relations between the phase
offsets, we propose to investigate how faithfully the resulting linear con-
figuration represents the original data set. This can be assessed by plotting
the model distances—the pairwise delays estimated within the model, δ̂i j —
against the measured phase offsets, ϕi j , for all unit pairs. Figure 7A shows
the corresponding plot for stimulation condition 1. The close scattering
around the diagonal and the high correlation (r = 0.98) indicate that the
model represents the measured phase offsets well (r = 0.97 and r = 0.93
in conditions 2 and 3, respectively). This suggests that the concept of



Spatiotemporal Structure Detected from Cross-Correlation 2395

●● ●●●● ●●● ●●●● ●

A

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
1

2 3456 789
10111213 14

●● ●●●● ●●● ●●●● ●

B

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

1
2

345
789

10111213 14
6

●● ●●●● ●●● ●●●● ●

C

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

12
3456 789

10111213 14

●●● ●● ●●● ●● ●●●●

            relative firing time [ms]

D

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

23
45

6
78 9
10

111214
113

Figure 6: Linear configurations on the time axis. The dots denote the estimated
positions of the units, and the black curves indicate localization errors (see
equation 2.4). Gray curves indicate localization errors under heteroscedasticity.
(A–C) Original data sets obtained from stimulation conditions 1 to 3. Stimulus
configurations are indicated on the left side of each panel. (D) Phase offsets in
the data set of stimulation condition 1 are permuted randomly.
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Figure 7: Comparison between measured phase offsets and the correspond-
ing model distances derived from those phase offsets. (A) Original data set.
(B) Original phase offsets permuted randomly.

additivity can be useful in decreasing the representational complexity of
the temporal structure within large data sets.

3 Consistency Analysis

A high correlation between phase offsets and model distances indicates
that the method presented here provides a reasonable representation of
the data structure. However, the interpretation of the data representation
has to take into account two distorting effects that could be caused by
assumptions of the model. First, phase offsets are assumed to be perfectly
additive except for measurement errors. As a consequence, a certain degree
of additivity is also extracted from data sets that are not inherently additive.
To address this issue, we compare the linear configuration obtained from the
original data set to a configuration derived from randomly permuted data
sets (see section 3.1). Second, the model assumes that phase offsets from
different subsets of units agree on the global linear configuration derived
from the entire data set. This could hide inconsistencies between different
subnetworks. We therefore present a method that can be used to investigate
the consistency of phase offsets across different subnetworks of neurons
(see section 3.2).

3.1 Consistency in Permuted Data Sets. We permuted the phase offsets
estimated in stimulation condition 1 by randomly assigning phase offsets
to pairs of units. This procedure destroys additive structure but maintains
the empirical distribution of phase offsets. If the linear configuration in
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Figure 8: Distribution of correlation coefficients between model distances and
phase offsets obtained from 10,000 permutations of the data set obtained in
stimulation condition 1. Arrow: correlation coefficient obtained in the original
data set (r = 0.98).

Figure 6A is entirely imposed by our method and not present in the data
set, application of the method to a permuted data set should result in
similar distances of units and similar measurement errors. Vice versa, if
the latter does not apply, the additivity model grasps important aspects of
the data structure. In this case, the positions of the units for the permuted
data set should be much closer to each other because a sum of randomly
assigned positive and negative phase offsets tends to average out (compare
equation 2.1).

The results of such a permutation test are shown in Figures 6D, 7B, and
8. The units are positioned closer to zero for the permuted phase offsets (see
Figure 6D) than they were in the original data set (see Figure 6A), and the
distributions that indicate the precision of the estimates are much broader
and overlap to a higher degree. The large width of these distributions
indicates a high disagreement between measured phase offsets and model
distances (see equation 2.4) and, thus, poor representation of permuted
phase offsets by the one-dimensional model. This can also be seen in the
corresponding scatter plot (see Figure 7B). The points are no longer scattered
along the diagonal, and the range of model distances is much narrower. This
makes the representation of larger phase offsets impossible. Accordingly,
the resulting correlation coefficient between permuted phase offsets and
model distances is small (r = 0.26) but positive, reflecting a small fraction
of additivity that is imposed by the estimation method.

The permutation procedure was repeated 10,000 times, and the result-
ing distribution of correlation coefficients between the permuted phase
offsets and their corresponding model distances is shown in Figure 8. All
correlation coefficients were far below the value r = 0.98 obtained for the
original data. Thus, by far the strongest linear structure among all 10,001
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Figure 9: Linear configurations of target units 1 to 6 determined from the phase
offsets to the reference units 7 to 10 and 11 to 14, separately.

investigated constellations was obtained from the original constellation, a
structure that is therefore highly unlikely to be obtained by chance.

3.2 Consistency Across Subnetworks. To investigate the consistency
of phase offsets across different subnetworks, we propose the following
procedure. Choose one subset of units (e.g., units 1–6) as the target set
that will be positioned on the time axis. Subdivide the remaining units
into two reference sets of similar sizes (e.g., units 7–10 and 11–14), and
use those sets to separately estimate two linear configurations for the tar-
gets, each configuration being obtained from a different reference set. High
agreement between the two linear configurations then indicates consistency
across subnetworks. To derive linear configurations from a subset of units,
only the offsets to one reference set are summed up in equation 2.1. Thus,
the position of target unit i derived from � reference units k1, . . . , k� is

1
(�+1) (ϕk1,i + ϕk2,i + · · · + ϕk�,i ). Note that the resulting linear configurations
are derived in relation to different reference sets and therefore do not have
the same means. Thus, they need to be recentered at zero prior to further
comparisons.

Figure 9 shows the estimated positions of units 1 to 6 in stimulation
condition 1 derived from the two reference sets comprising units 7 to 10
and 11 to 14, respectively. Although each position is estimated from only
four measurements, the order of units does not change, and distances be-
tween temporal positions are conserved to a high degree. Investigations of
other combinations of target and reference sets led to similar results (data
not shown). Thus, already small data sets can contain highly consistent in-
formation about the temporal structure in neuronal activity. Consequently,
estimates of temporal maps resulting from the entire data set should yield
an interpretable linear configuration that faithfully reflects the data set
structure for all units.



Spatiotemporal Structure Detected from Cross-Correlation 2399

4 Comparison of Two Linear Configurations

Phase offsets could represent a particularly interesting neuronal code if their
configuration depends on the stimulation condition or behavior (Hopfield,
1995; VanRullen & Thorpe, 2002). The first question that needs to be ad-
dressed in this respect is whether linear configurations change across stim-
ulation conditions. If the changes in the phase offsets occur solely due to
independent errors of measurement, these changes are also inconsistent
across phase offsets, and thus the size of the changes can be evaluated with
the estimate of the measurement error in equation 2.3—the error in additiv-
ity. In contrast, if the changes result from changes in the relative position of
the units, phase offsets change in a consistent manner, preserving additivity.
In this section, we propose methods for investigating the consistencies in
the changes of phase offsets and thus investigating whether there is a sta-
tistically significant amount of change that exceeds the variability resulting
from the additivity errors.

To this end, we propose two methods. First, one can obtain a graphical
representation of the differences between two configurations and include
an indicator of the positioning error based on the error of additivity (see
section 4.1). This graph can provide information about the extent of the
changes and the identity of the units involved in these changes. The graph-
ical analysis can then be complemented by a statistical test. To this end,
we propose an ANOVA approach (see section 4.2). (For an alternative test
independent of the additivity assumption, see Schneider & Nikolić, 2006.)

Both the graphical analysis and the ANOVA are applied to the sample
data set. To investigate the stability of responses to identical stimuli, the 20
presentations (trials) of the same stimulus were subdivided into two subsets
(odd and even trials with respect to the order of stimulus presentation). The
comparisons between different stimulation conditions were based on all 20
trials (for details, see appendix A).

4.1 Displaying Differences Between Two Linear Configurations. One
can compare two linear configurations of the same set of units by plotting
the estimated positions derived from two separate data sets against each
other (Figures 10 and 11A–C). Close clustering of the points around the main
diagonal indicates little or no differences between the linear configurations.
To this graph we add the following estimate of the positioning error. For
one unit k, the size of the difference between the two positions, (x̂(1)

k & x̂(2)
k ),

can be measured in terms of its variance, σ 2
D := Var(x̂(1)

k − x̂(2)
k ). If the unit

positions do not change more than is accounted for by the error of additivity,
then

σ 2
D = (n − 1)

n2 · (
σ 2

1 + σ 2
2

)
. (4.1)
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Figure 10: Comparisons of configurations of preferred firing times (f. times).
(A) Configurations derived from two simulated sets of phase offsets that differed
only in the random noise added to the measurements but not in the underlying
temporal structure. (B–D) Configurations obtained from odd and even trials
in stimulation conditions 1 to 3. Stimulus configurations are indicated on the
upper left side of each panel. Individual units are represented by points and
labeled on the right of each graph. Lines parallel to the diagonal indicate error
bands (±2σ̂D) computed with equation 4.1.

The terms σ1 and σ2 indicate the additivity errors in the two data sets
(see equation 2.3) and do not have to be equal. The borders indicating
approximate 95% confidence intervals (i.e., 2σD) are then plotted parallel
to the diagonal. Those points that lie outside this band indicate that the
corresponding units changed their positions to a higher degree than what
would be expected by the additivity errors.
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To illustrate the applicability of such graphs, we simulated two sets of
phase offsets. We used the linear configuration obtained from stimulation
condition 1 and added to each pairwise distance an artificial measurement
error: independent and normally distributed random noise with the same
variance as estimated from the data set with equation 2.3 (σ̂ 2 ≈ 0.04). The
graphical approach was then used to compare the two linear configurations
derived from the two simulated sets of phase offsets. Figure 10A shows that
the units remain within the error borders. Thus, the graphical method does
not indicate changes in the units’ positions when the linear configuration
remains stable.

By using this method, we compared linear configurations that were ob-
tained under both identical and different stimulation conditions. The po-
sitions of the units across odd and even trials of the same stimulation
condition (conditions 1–3) are shown in Figures 10B to 10D, together with
the error lines. The positions of almost all units remained within the error
bands, indicating that the variabilities of the positions for the most part did
not exceed the variabilities expected by the measurement errors.

In Figures 11A to 11C, we show three pairwise comparisons in linear
configurations across different stimulation conditions (conditions 1–2, 1–3
and 2–3, respectively). One can see that in the comparisons involving stim-
ulation condition 3 (Figures 11B and 11C), about half of the units lie outside
the error bands. Thus, in contrast to the comparisons between identical
stimulation conditions, the changes in the positions across different stimu-
lation conditions can be much larger than what would be expected by the
measurement errors. This, however, does not have to apply to all cases, as
the comparison between conditions 1 and 2 indicates. With the exception of
one unit, there are no changes in positions that exceed the additivity error.

Changes between different stimulation conditions are often also visible
in the original CCHs. For one pair of units (3–5), we show the CCHs obtained
in stimulation conditions 1–3 in Figures 11D to 11F, respectively. One can
see that the point at which the fitted cosine function reaches its maximum
is similar in conditions 1 and 2 but changes for condition 3 (for a direct
statistical analysis of raw phase offsets, see Schneider & Nikolić, 2006).

In conclusion, the graphical method can be a useful tool for comparing
linear configurations. The method illustrates the degree to which the unit
positions change relative to the errors in additivity and visualizes the direc-
tions of these changes. In the data set, application of the method indicates
that temporal positions change much less in response to identical stimuli
than in response to different stimuli.

However, the graphical approach cannot be used directly for statistical
inferences. This is because the method does not correct for multiple com-
parisons among different conditions (type I error) or for the dependencies
among position estimates of different units introduced by setting the sum
of unit positions to zero. Thus, if one unit moves in one direction, the tem-
poral positions of all remaining units move in the opposite direction. As
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a consequence, the graphical method cannot provide a rigorous statistical
tool to decide whether the changes between two configurations exceed the
error in additivity. This question can be addressed much more accurately
by an ANOVA approach, which we discuss in the following section.

4.2 Statistical Test for Two Linear Configurations. We now introduce
a test with which the graphical representations discussed in the preceding
section can be analyzed statistically. Changes across two linear configura-
tions can be evaluated with respect to the errors of additivity by using a
general ANOVA approach. Mathematical details are provided in appendix
B.3; here we outline the main computational steps.

For each of the two sets of phase offsets (k = 1, 2), one has to estimate the
linear configuration of units {x(k)

1 , . . . , x(k)
n } (see equation 2.1), the pairwise

model distances, δ̂(k)
i j (see equation 2.2), and the measurement error, σ̂ 2

(k) (see
equation 2.3). Under the null hypothesis, the two configurations are identi-
cal, and model distances and phase offsets differ only due to measurement
error. Then the test statistic

F = 1
σ̂ 2

(1) + σ̂ 2
(2)

· 1
n − 1

∑
i< j

(
δ̂

(1)
i j − δ̂

(2)
i j

)2
(4.2)

is Fisher distributed with (n − 1) and (n − 1)(n − 2) degrees of freedom
(see appendix B.3). In contrast, if the two configurations differ, then F is
increased by larger differences in model distances between the two data
sets, (δ̂(1)

i j − δ̂
(2)
i j ). One can intuitively interpret F as the squared difference

between the linear configurations measured in units of the measurement
error, σ̂ 2

(1) + σ̂ 2
(2).

We applied this ANOVA to the data sets presented in Figures 10 and
11; the results are shown in Table 1. Qualitatively, the F - and the p-values
indicate the same relations as the graphical representations in Figures 10
and 11: the changes in the relative firing times are much stronger between
responses obtained to different stimulation conditions than between odd
and even trials of the same stimulation condition.

Two comparisons of identical stimulation conditions (conditions 1 and
2) show significant p-values (at α = 0.05), indicating that the changes across
odd and even trials are larger than what is accounted for by the additivity

Figure 11: Comparison of configurations across stimulation conditions. (A–C)
Three pairwise comparisons between different stimulation conditions: 1 to 2,
1 to 3, and 2 to 3 (notation as in Figure 10). (D–F) Raw CCH counts for the unit
pair 3 to 5 in stimulation conditions 1 to 3 in the original time resolution of
1/32 ms. Black: Cosine functions fitted to the central peak (i.e., ±10 ms) of the
CCH counts.
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Table 1: Results of ANOVA Applied to a Sample Data Set Tested for Changes
in Linear Configurations.

Identical Stimuli Different Stimuli

Cond. F p p* Cond. F p p*

1 vs. 1 2.0 0.027 0.047 1 vs. 2 5.3 0 0
2 vs. 2 2.7 0.002 0.006 1 vs. 3 22.5 0 0
3 vs. 3 1.2 0.283 0.288 2 vs. 3 15.4 0 0

Notes: For n = 14 units, every data set contains
(n

2

) = 91 phase offsets, re-
sulting in (n − 1) = 13 and (n − 1)(n − 2) = 156 degrees of freedom. p = 0
indicates that the respective values were smaller than 10−7 (1-2: p < 10−7,
1-3 and 2-3: p < 10−16). p∗-values are derived from 10,000 simulations to
correct for inequality of variances. p∗ = 0 indicates that not a single simu-
lation, out of 10,000, showed an F -value larger than the one obtained in the
experimental data set.

errors computed within each of the two configurations. This result suggests
that violations of the model assumptions might have increased the type I
error. It is therefore necessary to discuss whether the results might be af-
fected by violations of the model assumptions.

A violation of the normality assumption is unlikely to have affected the
results. In the data set, measurement errors showed no deviations from
the normal distribution (Schneider & Nikolić, 2006), and ANOVA is highly
robust to the violations of the normality assumption (e.g., Pearson, 1931).

ANOVA is also highly robust to the violation of the assumption that
the variances are equal (e.g., Horsnell, 1953). We nevertheless estimated
the extent to which unequal variances could have affected our findings
because this assumption was violated to a certain degree in the data set
(see section 2.2 and Figure 5B). The p-values that correct for inequality
of variances can be obtained by the following simulation procedure. For
two sets of estimated phase offsets {ϕ(1)

i j }i< j , {ϕ(2)
i j }i< j and their individual

variances {σ (1)
i j }i< j , {σ (2)

i j }i< j , estimate first the global linear configuration as
the mean of the configurations of the compared sets. Next, phase offsets are
generated by adding independent and normally distributed measurement
error with variance (σ (k)

i j )2 to each model distance δ
(k)
i j , k = 1, 2. With this

procedure, we simulated 10,000 data sets and performed ANOVA by using
equation 4.2. The percentage of simulations with a larger F-value than what
was found in the original data set was used as the corrected p-value.

The results are shown in Table 1 (column indicated with p∗). The cor-
rection for unequal variances increased the p-values in the comparisons
between odd and even trials. However, this increase was relatively small,
and the changes within stimulation conditions 1 and 2 remained significant.
This suggests that in this data set, inequality of variances was not the main
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factor responsible for the significant changes within stimulation conditions
1 and 2.

Finally, the model assumes that measurement errors are independent.
With regard to this, it is necessary to discuss possible sources of variability
that are dependent such that the changes across phase offsets are additive.
Dependent variability of phase offsets emerges if the primary source of
variability is the position of units rather than the individual phase offsets.
The analysis methods intepret such dependent changes in phase offsets as
differences in the linear structure, not as measurement error. Any addi-
tive variability in phase offsets is included in the position of the units by
equation 2.1 and thus not included in the measurement error by equation
2.3. Thus, consistent and dependent changes in phase offsets are the most
likely reason for the significant ANOVA comparing odd and even trials in
Table 1.

This property of the test does not constitute a violation of the assumption
of independent measurement errors and thus does not invalidate the results
of the ANOVA. This is because the methods are designed to investigate
only the consistency between phase offsets, not the variability of the units’
positions across repeated measurements. Therefore, the results obtained
should be interpreted accordingly. The proper interpretation is that the rate
of type I error does not increase, but instead, the positions of the units
vary slightly more than expected from the error in additivity. The questions
related to the variability of the unit positions across repeated measure-
ments should be addressed by conventional statistical methods. The meth-
ods used here provide the means to obtain these temporal positions and
test whether they change in a sufficiently consistent way to warrant further
investigation.

5 Discussion

In this letter, we propose a method for analyzing temporal relations between
the firing events of large groups of simultaneously recorded neurons. The
method uses pairwise temporal relations defined as the positions of center
peaks in CCHs and assumes that these relations are additive across all pairs.
If the data set complies with this assumption, it is possible to represent the
underlying spatiotemporal relations on a single temporal dimension, which
then indicates the preferred times at which neurons fire action potentials
relative to each other. We present a graphical tool as well as a statistical test
that can be applied to data in order to investigate whether changes of such
spatiotemporal maps across different measurements are consistent across
phase offsets.

The method we have presented requires the existence of prominent cen-
tral peaks in CCHs and is therefore highly related to the concept of syn-
chronized firing events that occur across groups of neurons (Abeles, 1982;
Diesmann, Gewaltig, & Aertsen, 1999; Singer, 1999). Synchronous events
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have been found to occur with a precision of up to a few milliseconds
(Riehle, Grün, Diesmann, & Aertsen, 1997; Grün, Diesmann, Grammont,
Riehle, & Aertsen, 1999), and linear configurations may thus be extracted
on a timescale that is finer than the maximal delay up to which events have
been characterized as coincident. Another property of the method presented
here is that it does not require the delays between firing events to repeat as
exact replicas of each other. Instead, it is sufficient that the delays cluster
around a certain value that can be obtained from a CCH. Thus, the method
detects spatiotemporal patterns on the basis of events that are allowed to
jitter over time and may therefore be invisible in raw spike trains. Also,
temporal relations between unit pairs do not have to be stable over time.
Instead, phase offsets are defined as those delays observed predominantly
between a pair of units in the chosen analysis window and may thus result
from temporally inhomogeneous processes (Vaadia et al., 1995).

The model that extracts the spatiotemporal relations assumes ho-
moscedasticity and independent and normally distributed measurement
errors and is thus compatible with a standard ANOVA approach. This al-
lows for high flexibility in investigating various variables that might affect
the relative firing times of neuronal cells. Finally, the method has the ad-
vantage of being applicable to the activity of both single units and multiple
units, as well as to any set of continuous signals that show preferred delays
in their cross-correlation, prominent examples being the local field poten-
tial (e.g., Gray, Engel, König, & Singer, 1992; Roelfsema et al., 1997) and the
electroencephalogram (e.g., Sauseng et al., 2005).

Perhaps most surprising is our finding that the temporal map indicating
the preferred times at which units fire action potentials relative to each
other can be determined with a precision much higher than previously
reported for the visual cortex (König et al., 1995; Roelfsema et al., 1997).
This precision can take values smaller than 1 millisecond and is achieved
partially by the fitting procedure used to estimate the positions of the center
peaks (Schneider & Nikolić, 2006) and partially due to the integration of
multiple pieces of information obtained from different CCHs. As we could
show, this allows detecting unusually small changes in the preferred firing
times.

The question whether small spiking delays and their resulting spatiotem-
poral relations have functional significance is beyond the scope of this study.
However, we believe that the proposed methods will help to address these
issues as they provide important tools for the detection, display, and anal-
ysis of temporal relationships between spiking events of a large number of
neurons.

Appendix A: Methods for Data Acquisition

A.1 Preparation and Recordings. Anesthesia was induced with ke-
tamine and after trachiotomy, was maintained with a mixture of 70%
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N2O and 30% O2, and with halothane (0.4–0.6%). The cats were para-
lyzed with pancuronium bromide applied intravenously (Pancuronium,
Organon, 0.15 mg kg-1 h-1). Multiunit activity (MUA) was recorded by
using an SI-based 16-channel probe (organized in a 4 × 4 spatial matrix),
which was supplied by the Center for Neural Communication Technology
at the University of Michigan (Michigan probes). The probe had intercon-
tact distances of 200 µm (0.3–0.5 M� impedance at 1000 Hz). Signals were
amplified 1000 times, filtered between 500 Hz and 3.5 kHz, and digitized
with 32 kHz sampling frequency. The probe was inserted into the cortex ap-
proximately perpendicular to the surface, which allowed us to record simul-
taneously from neurons at different depths and along an axis tangential to
the cortical surface. Fourteen MUA signals responded well to visual stimuli
and had good orientation selectivity. This resulted in a cluster of overlap-
ping receptive fields (RF), all being stimulated simultaneously by the same
stimulus.

A.2 Visual Stimulation. Stimuli were presented on a 21 inch computer
monitor (HITACHI CM813ET, 100 Hz refresh rate). The software for vi-
sual stimulation was a commercially available stimulation tool, ActiveSTIM
(www.ActiveSTIM.com). Binocular fusion of the two eyes was achieved by
mapping the borders of the respective RFs and then aligning the optical axes
with an adjustable prism placed in front of one eye. The stimuli consisted of
either one white bar or two bars moving in different directions (60 degree
difference in orientation). In the stimuli with two bars, the bars crossed
their paths at the center of the RF cluster. At each trial, the stimulus was
presented in total for 5 seconds, but only 2 seconds with the strongest
rate responses were used for the analysis. The bars appeared at about
3 degrees eccentricity of the center of the RF cluster and moved with a
speed of 1 degree per second, covering the cluster of RFs completely. In
the six stimulation conditions the bars moved in the following directions:
1: 30 and 330 degrees; 2: 0 degrees; 3: 150 and 210 degrees; 4: 180 degrees;
5: 30 and 150 degrees; 6: 210 and 330 degrees. Each stimulation condi-
tion was presented 20 times, and the order of conditions was randomized
across trials. In our study, we used only conditions 1, 2, and 3 for the
analysis.

Appendix B: Mathematical Proofs

B.1 ML-Estimates of Unit Positions (Eq. 2.1). Consider the vector x :=
(x1, . . . , xn) of real numbers representing the positions of the units with∑

xi = 0. The
(n

2

)
distance measurements are denoted by

ϕi j = (xj − xi ) + σ Zi j , 1 ≤ i < j ≤ n,
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with independent measurement errors σ Zi j ∼ N (0, σ 2). Define ϕ j i := −ϕi j

for j < i , implying ϕi i = 0. Then the ML estimate of x is given by

x̂k := 1
n

∑
�

ϕ�k k = 1, . . . , n.

Proof. As ϕi j ∼ N (xj − xi , σ
2) ∀1 ≤ i < j ≤ n, the likelihood function is

given by

L(x) = 1

(
√

2πσ )(
n
2)

exp


− 1

2σ 2

∑
i< j

(ϕi j − (xj − xi ))2


 .

Maximizing L requires minimizing the sum of squares:

Q(x) =
∑
i< j

(ϕi j − (xj − xi ))2 =
∑
i≤ j

(ϕi j − (xj − xi ))2.

With ∂ Q(x)
∂xk

= 2
∑n

�=1(ϕk� + xk − x�) = 2
∑n

�=1 ϕk� + 2nxk and ∂2 Q
∂2x2

k
= 2n

and ∂2 Q
∂xk∂xl

= 0 for k �= �, the estimates x̂k = 1
n

∑
� ϕ�k minimize Q(x).

B.2 Unbiasedness of σ̂ 2 (Eq. 2.3). We want to show that E (σ̂ 2) = σ 2,

that is, that σ̂ 2 := (n−1
2

)−1
Q(x̂) is an unbiased estimate of σ 2. x̂ := (x̂1, . . . , x̂n)

denotes the vector of position estimates. The expectation of each summand
in Q(x̂) is

E
[
(ϕi j − δ̂i j )2] = Var(ϕi j − δ̂i j ) + ( E (ϕi j − δ̂i j ))2,

with Var(ϕi j − δ̂i j ) = n − 2
n2 σ 2[(n − 2) + 2] = n − 2

n
σ 2

and E (ϕi j − δ̂i j ) = 1
n

∑
k �=i, j

E (ϕi j + ϕ jk + ϕki ) = 0.

Thus, E (σ̂ 2) = 1(n−1
2

) ·
(

n
2

)
(n − 2)

n
σ 2 = σ 2.

B.3 Distribution of Test Statistic F (Eq. 4.2). Let C1 := {x(1)
1 , . . . , x(1)

n }
and C2 := {x(2)

1 , . . . , x(2)
n } be two sets of real numbers representing linear

configurations on the time axis, with
∑

i x(1)
i = ∑

i x(2)
i = 0. For all pairs

(i, j)1≤i< j≤n, let

ϕ
(1)
i j := x(1)

j − x(1)
i + σ Z(1)

i j and ϕ
(2)
i j := x(2)

j − x(2)
i + σ Z(2)

i j (B.1)
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be the raw distance measurements with independent (Z(k)
i j )k=1,2

1≤i< j≤n ∼
N (0, 1).

We want to test the null hypothesis, H0, that C1 and C2 are identical,
against the alternative, H1, that the two configurations differ:

H0 : x(1)
i = x(2)

i ∀i = 1, . . . , n, H1 : ∃i ∈ {1, . . . , n} : x(1)
i �= x(2)

i .

Let D denote the merged data vector of all 2
(n

2

)
phase offset measurements:

D :=
(

(ϕ(1)
i j )i< j ,

(
ϕ

(2)
i j

)
i< j

)
(B.1)=

((
x(1)

j − x(1)
i

)
i< j

,
(

x(2)
j − x(2)

i

)
i< j

)
+ �σZ

=: �µ + �σZ,

where �σ is a vector all of whose 2
(n

2

)
entries equal σ and Z is standard normal

in R
2(n

2). The systematic term, �µ, represents the additivity assumption that
phase offsets are pairwise distances between points on a line. This holds true
for both H0 and H1 and is represented by the model space M and the model
assumption �µ ∈ M. Let H denote a subspace of M such that �µ ∈ H describes
the null hypothesis. If the alternative hypothesis is true, then �µ /∈ H, which
means that �µ has a component in the orthogonal complement of H in
M, called E . Note that dim(M) = 2(n − 1), dim(M⊥) = (n − 1)(n − 2), and
dim(H) = dim(E) = n − 1.

We decompose the data vector D by orthogonal projection onto H and
M,

D = PHD + PED + PM⊥D,

and compare the lengths of PED and PM⊥D. The vector PED represents the
differences between the two linear configurations, and PM⊥D represents the
residual error:

Under H0 : PED = PE �σZ, and therefore 1/σ 2‖PED‖2 ∼ χ2(dim(E))
Under H1 : ‖PED‖2 = ‖PE �µ + PE �σZ‖2 > ‖PE �σZ‖2

In both cases, PM⊥D = PM⊥σZ, hence, 1/σ 2‖PM⊥ �σZ‖2 ∼ χ2(dim(M⊥)).
Thus,

F = ‖PED‖2/ dim(E)
‖PM⊥D‖2/ dim(M⊥)

∼ F ((n − 1), (n − 1)(n − 2)) (B.2)

is, under H0, Fisher distributed with (n − 1) and (n − 1)(n − 2) degrees of
freedom, whereas under H1, F is increased systematically.



2410 G. Schneider, M. Havenith, and D. Nikolić

It remains to compute the lengths of PED and PM⊥D:

PMD =
((

δ̂
(1)
i j

)
i< j

,
(
δ̂

(2)
i j

)
i< j

)
=

((
x̂(1)

j − x̂(1)
i

)
i< j

,
(

x̂(2)
j − x̂(2)

i

)
i< j

)
,

where x̂(k)
i are the ML estimates derived separately for each of the two data

sets. These estimates minimize the term
∑

i< j (ϕ
(k)
i j − δ̂

(k)
i j )2 for k = 1, 2 and

thus minimize also
∑

k=1,2
∑

i< j (ϕ
(k)
i j − δ̂

(k)
i j )2. Thus,

PM⊥D=D − PMD =
((

ϕ
(1)
i j − δ̂

(1)
i j

)
i< j

,
(
ϕ

(2)
i j − δ̂

(2)
i j

)
i< j

)

and ‖PM⊥D‖2 =
∑

k=1,2

∑
i< j

(
ϕ

(k)
i j − δ̂

(k)
i j

)2
. (B.3)

To derive PED, note that under H0, the estimates of the model distances are
averages of the estimates derived separately in the two data sets because
the measurement error is assumed to be of the same size in the two data
sets. Thus,

PHD= 1
2

((
δ̂

(1)
i j + δ̂

(2)
i j

)
i< j

,
(
δ̂

(1)
i j + δ̂

(2)
i j

)
i< j

)

and ‖PED‖2 =‖PMD − PHD‖2 = 1/2
∑
i< j

(
δ̂

(1)
i j − δ̂

(2)
i j

)2
. (B.4)

With equations B.2 to B.4, we can conclude

F =
1
2

∑
i< j

(
δ̂

(1)
i j − δ̂

(2)
i j

)2
/(n − 1)

∑
k=1,2

∑
i< j

(
ϕ

(k)
i j − δ̂

(k)
i j

)2
/(n − 1)(n − 2)

= 1
σ̂ 2

1 + σ̂ 2
2

· 1
(n − 1)

·
∑
i< j

(
δ̂

(1)
i j − δ̂

(2)
i j

)2
,

where σ̂ 2
k (k = 1, 2) is the estimate of σ 2 derived in data set k with equa-

tion 2.3.
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