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Abstract. We present a novel method that can be used to characterize
the dynamics of a source neuronal population. A set of readout, regular
spiking neurons, is connected to the population in such a way as to
facilitate coding of information about the source in the relative firing
phase of the readouts. We show that such a strategy is useful in revealing
temporally structured processes in the firing of source neurons, which
have been recorded from cat visual cortex. We also suggest extensions
of the method to allow for the direct identification of temporal firing
patterns in the source population.
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1 Introduction

Information coding in the brain remains, to this date, the subject of lively de-
bate. It has been proposed that in addition to the traditional firing-rate coding
[1], the temporal structure of spike-trains also carries a significant amount of
information [2]. A special case of temporal code is represented by neuronal syn-
chronization, which has been recently shown to correlate with the perception of
brightness [3], and also with conscious perception [4]. Beyond synchronization,
temporal codes might assume more generalized forms, whereby spikes are not
perfectly aligned, but arranged into temporal patterns. Polychronization, which
relies on synaptic delays, is such an example [5]. A different putative mechanism
organizing spikes into temporal patterns is represented by timed inhibition, pre-
cisely controlled by fast oscillatory rhythms in the gamma band [6]. In this latter
case, temporal phase patterns may even be expressed within a single gamma cy-
cle, with more excited neurons firing earlier relative to the onset of the cycle
than less excited ones. Furthermore, we now know that there is a tight interplay
between the expression of neuronal oscillations and temporal coding in the cor-
tex [7], with rhythms expressed in different frequency bands [8]. Even further,



temporal codes could be defined beyond single-spike timing. For example, bursts
or very fast rate fluctuations could be timed relative to each other, as dictated
either by internal network constraints, or by the temporal dynamics of the stim-
ulus. It is very likely that multiple timescales play important roles [9] and the
relative timing of processes evolving on these different timescales, is of crucial
importance to the brain. Identifying these processes and their specific combi-
nations, which carry information about stimuli, remains however a tremendous
challenge. Various methods have been put forward, so far, for the detection and
proper interpretation of synchronous spike patterns [10, 11] or temporal struc-
ture of membrane potential fluctuations [12, 13]. However, the difficulty remains
to identify, in a flexible way, more general activity patterns (beyond synchrony)
across a large population of neurons. There are two categories of problems: First,
one cannot always know the timescale on which the relevant processes should
be searched since these are likely to coexist on multiple timescales. Second, it
is unclear how much history dependence one should take into account when de-
tecting candidate correlation patterns. Nontrivial combinations of single spikes,
bursts or even fast rate fluctuations, could be co-occurring in a stimulus spe-
cific manner and precisely timed relative to each other. The number of possible
combinations far exceeds the analysis capabilities of most modern techniques.
Thus, one needs to narrow down the search to a specific temporal window and
a specific process/timescale. We wanted to break this limitation by considering
that in the brain, neuronal information is read out by other neurons which in-
tegrate complex input patterns. Following a similar previous approach [14], we
considered a readout set of simulated regular spiking (RS) neurons (observers)
that preferentially sample subpopulations of a larger neuronal pool (the source
neurons), the latter being recorded from the brain. We attempt to recover the
information coded in the source neurons’ dynamics by observing the relative fir-
ing phase of the readouts. At least to a first degree of approximation, interesting
events can be assumed to span the timescale defined by the time constant of
the neuronal membrane and the dynamics of synaptic currents. Except for the
implicit time constants of readouts and their corresponding synapses, we did
not restrict the information extraction to a fixed timescale, allowing for a broad
range of temporal processes to be observed in a biologically relevant fashion.
Moreover, the activation of readouts could reveal nontrivial combinations in the
activity of source subpopulations, even when having source processes delayed
with respect to each other on a broad temporal interval.

2 Methods

Since the method we describe here relies on information encoded in the relative
firing phases of artificial readout neurons, we called the method ”InfoPhase”.

2.1 Experimental procedures, stimulation and recording

The experiment was performed in the visual cortex of a lightly anesthetized,
paralyzed cat. Anesthesia was induced with ketamine (Ketanest, Parke-Davis,



10 mg kg−1, intramuscular) and xylazine (Rompun, Bayer, 2 mg kg−1, intramus-
cular) and maintained with a mixture of 70% N2O and 30% O2 supplemented
with halothane (0.5%-1.0%). The animal was paralyzed with pancuronium bro-
mide (Pancuronium, Organon, 0.15 mg kg−1 h−1). Visual stimuli were presented
binocularly on a 21 inch computer screen (HITACHI CM813ET) with 100 Hz
refresh rate. Data were recorded from area 17 by inserting multiple silicon-based
multi-electrode probes (16 channels per electrode) supplied by the University
of Michigan (Michigan probes). Signals were amplified 10,000× and filtered be-
tween 500 Hz and 3.5 kHz for extracting multi-unit activity. Offline spike-sorting
techniques were next applied and 61 single units were extracted. The investi-
gated neuronal activity was acquired in response to sinusoidal gratings moving
in 12 directions in steps of 30◦. For each condition, 20 trials have been recorded,
yielding a total of 240 trials. Each trial had a length of 4800 ms. After a sponta-
neous activity lasting for 1000 ms, the stimulus was presented for 3500 ms, and
subsequently, after the stimulus was removed, 300 ms additional OFF response
activity was recorded.

2.2 The readout model

For the artificial readouts we used the two-dimensional phenomenological model
of Izhikevich [15]. Each neuron is described by a set of differential equations:

dv/dt = 0.04v2 + 5v + 140− u+ I (1)

du/dt = a · (bv − u) (2)

where v - membrane potential, u - recovery variable, I - total post-synaptic
current (I =

∑
psci), a,b - parameters. When the membrane potential reaches

a value larger than 30 mV, a spike is recorded and the membrane potential is
reset to its resting value (-65 mV), while the recovery variable is increased by a
given amount (8 for the RS neuron).

We used the parameter settings for the RS neurons, as they best represent
the dynamics of pyramidal neurons in the cortex [15]. We next connected 10 RS
readouts to the recorded population of cortical neurons (61 source neurons). This
was the most important step, as we wanted to obtain the following: reduce the
dimensionality of the data by projecting the activity of the source neurons onto
the readouts, preserve as much temporal information as possible, and finally,
reduce the influence of the firing rate. To this end, we created balanced synapses
for each readout: Every readout was connected with all source neurons via ex-
citatory synapses that produced exponentially decaying post-synaptic currents
[16]:

psci = A ·Wi · gi · (Esyn − vpost) (3)

dgi/dt = −gi/τsyn (4)

where, psci - post-synaptic current contributed by synapse i, A - an amplitude
parameter determining the maximal amplitude of psc (global constant that al-
lows scaling all synapses), Wi - synaptic strength, gi - instantaneous synaptic



conductance, Esyn - reversal potential of the synapse (taken 0 mV for excitatory
synapses), vpost - membrane potential of the post-synaptic neuron, τsyn - time
constant for the decay of the synaptic conductance (here 30 ms).

The synapses of neurons are balanced in the sense that the total synaptic
gain (sum of all input weights) is similar for all readouts. Each connection is
instantiated such that it represents a relatively small random fluctuation (<
28%) on top of a constant baseline:

Wi = 0.9 + rand[−0.25...+0.25] (5)

where rand[] represents the uniform random function in a given interval.
The instantiation scheme for the synapses is crucial. Each readout neuron is

receiving roughly the same amount of excitation but samples slightly differently
the source population of cortical neurons. By choosing a small enough value for A
(here 0.05) the readouts will engage into quasi-periodic firing, with slight differ-
ences in their phases (Fig. 1). Because all synapses have very similar strengths,
except for the small random fluctuation (< 28%), when one source cortical neu-
ron increases its firing rate, all readout neurons receive simultaneously increased
excitation, and hence tend to shift their phase together. The exact amount of
phase shift, for each readout, will depend on the particular sampling given by the
synaptic distribution, and the activity of the underlying source subpopulations.
Each readout can be considered as an independent observer that integrates, over
time, the activity of preferred source subpopulations.

Phase pattern

Cortical neurons (source)

Readout
neurons #1

#61

#1

#10

Fig. 1. Schematic representation of the InfoPhase readout method. Readout neurons
are connected via conductance-based synapses to recorded cortical neurons, and pro-
duce quasi-periodic phase patterns.

We can now go one step further and extract the phase relationships among
readout neurons (Fig. 2). These relative phases represent differences in the ac-
tivation of various source subpopulations (randomly selected by the particu-
lar synaptic instantiation) that were integrated over time by the readouts and
translated into small phase differences. Thus, we are observing non-trivial com-
binations of spatio-temporal patterns evolving in the source population (cortical
neurons) and reflected in the phases of the readouts.



2.3 The classifier

To assess the amount of information that can be extracted by the readout pop-
ulation from the cortical source, we next constructed a simple classifier, in three
steps: extraction of phase vectors, clustering, and training. First, the phase pat-
terns of the readouts are isolated using a sliding window for detection (Fig. 2A)
and then converted into phase vectors by computing the relative phases with
respect to neuron 1 (Fig. 2B). We obtained a sequence of phase vectors that
represents the mapping of the cortical firing onto the activity of the readouts
(Fig. 2C). Each experimental trial can then be represented as a sequence of phase
vectors.
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Fig. 2. Building of phase vectors. A. A sliding window is used to detect and isolate the
firing phase patterns of the readouts. B. The isolated phase pattern is converted into
a phase vector by computing the relative phases with respect to a reference neuron. C.
The information from the cortical population is reflected in the readout phase patterns
which are then converted into a sequence of phase vectors. Schematic illustration only.

Many phase vectors that represent a trial are similar to each other such
that the vector space appears clustered. There are a few dense clouds and many
scattered points. To have a good representation of this space we first applied a
K-Means clustering with K being determined empirically (for this dataset the
optimal K=40). Clustering, ensures that dense clouds are represented only by
one phase vector (cluster center), and hence, increases robustness against noise.
We should mention, however, that the method functions reasonably well without
this step. For simplicity, we chose a classifier that memorizes, for each stimulus
class, a set of representative, specific, phase vectors, called model vectors. The
model vectors are computed during the training phase. We used a split-half



procedure by randomly selecting, for each condition, half the trials (10 trials)
for training and half for testing. From each training trial, the phase vectors are
considered one by one. For a given vector, the closest phase vector (in Euclidian
distance) is searched in the other training trials (of all conditions). If the closest
vector belongs to the same stimulus condition, then the vector is marked as being
stimulus specific and added to the list of model vectors for the corresponding
stimulation condition. After training, each stimulation condition (class) will be
represented by a variable number of model vectors, assigned by the previously
described procedure. During testing, for each test trial, we first compute the
predicted stimulus class by applying a scoring procedure. The score is computed
as follows: For each phase vector from the trial to be classified, we search for the
closest model vector among all models. For the matching condition, a value is
added to the corresponding global scoring:

Sk = Sk + 1/NrModels(k) (6)

where, Sk - global score corresponding to the matching condition k,NrModels(k)
- the number of model vectors describing stimulus class k.
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Fig. 3. A typical result of the scoring procedure for a trial. The trial is assigned the
predicted class (stimulus) with the highest score.

The scoring protocol normalizes against the number of model vectors of each
class such that classes having different number of models are treated equally. All
phase vectors of the trial to be classified are scored in a similar manner. Finally,
the predicted class of the trial is computed as the class with the maximum
score (Fig. 3). After classifying all the test trials, we computed the classification
performance as being the percent correctly classified trials from the testing set.
Trials for which there were two or more classes sharing the same maximum score
were considered as unclassifiable and were not included in the computation of
the classification performance. This case appeared however very rarely.

3 Results

We applied the InfoPhase method to a dataset recorded from cat area 17, stim-
ulated with drifting sinusoidal gratings moving in 12 different directions (30◦



steps, see Methods). We classified the test trials, computed the classification
performance, and tried to identify the time scale of the information that has
been extracted from the cortical population’s activity.

3.1 Classification performance

After training on 120 trials and classifying the other 120 trials we obtained a
classification performance of 57%.
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Fig. 4. Classification performance on the original data (57%) and distribution of clas-
sification performances when the labels (classes) are randomly permuted (H0).

We next wanted to determine whether this performance was obtained by
chance or it reflected legitimate information about the stimuli that was extracted
by the method from the cortical spikes. We hypothesized that the observed per-
formance was obtained by chance (H0) and computed the distribution of the
performance when the trial labels (classes) were randomly permuted. We used
5000 permutations to estimate the distribution. The expected performance un-
der H0 was (as can also be computed theoretically) 8.3%. More importantly, the
performances obtained by chance never exceeded 18% (Fig. 4). Thus, the differ-
ence between chance performance and the observed classification performance
of 57% on the original, unpermuted data, was highly significant (p � 0.001).

3.2 Temporal dynamics of cortical neurons

Sinusoidal gratings, which were used in the experimental protocol, are known to
produce robust rate responses [17]. By integrating 3.5 seconds of activity across
the 61 source neurons and computing the mean firing rate, one can classify the
test trials 98.3% correct. The mean firing rate code is completely insensitive to
the temporal structure of the spike trains. At the other extreme, there might be
fast codes, where information is coded in up to tens of milliseconds of activity.
We estimated the sensitivity of the readouts to the temporal structure of the
source spike trains by progressively altering the original cortical spike times, in



0

10

20

30

40

50

60

0 5 10 15 20 25 30 35

Noise level - spike jitter (ms)

Chance level

C
o

rr
e
c
tl

y
c
la

s
s
if

ie
d

(%
)

Time

Original

Jittered

± X msA

B

Shift [ms]

80400-40-80

50

40

30

20

10

0

#
C

o
in

c
id

e
n

c
e
s

C

Fig. 5. Determining the temporal scale of the information extracted by the readout
population. A. The temporal structure of the source spike trains can be progressively
altered by jittering individual spike times. B. The classification performance drops
steeply with the amount of jitter, indicating sensitivity of the method to the temporal
structure of the source spike trains (error bars are SD). C. Autocorrelation histogram
on the spike train of a source unit.

a way that preserves mean firing rates but destroys the fast temporal structure
of the data.

We applied progressive jittering of spike times in the source dataset (Fig. 5A)
by independently shifting each spike with a value drawn from a Gaussian distri-
bution with 0 mean and standard deviations between 5 and 30 ms, changed in
steps of 5 ms. The classification performance dropped rapidly with the amount of
jitter applied to the source spike trains (Fig. 5B), hinting towards the possibility
that the method extracts information that is encoded on fast temporal scales.
Also note that the classification performance remained significantly better than
chance, regardless of the amount of jitter. This suggests that, despite using phase
readout patterns to classify, the readouts can also take advantage of the firing
rate codes in the source dataset and thus the influence of the rate code cannot be
completely eliminated. In addition, autocorrelation analysis of the source spike
trains (Fig. 5C) revealed oscillatory activity with an oscillation period around
25-27 ms (beta-high band [8]) suggesting that the oscillation cycles might play
an important role in enabling the coding of fine-grained temporal information
in the source neurons [6].



4 Discussion

As we have seen, artificial spiking neurons can be successfully used to read out
information from cortical spike trains. The method we presented here relies on
regular spiking neurons that represent biased observers, sampling subpopula-
tions of the cortical neuron set. The bias is minimal such that differences in the
activation of the respective subpopulations are only enough to bring readouts
out of phase but not enough to change their mean firing rate. The information
can be thus extracted without imposing a rigid, fixed time scale for the observers.
Moreover, the specificity of phase differences among the readouts seems to corre-
late with the fine temporal structure of the cortical spike trains. However, there
are several aspects that need to be addressed in future studies.

First, the synapses of the readouts are biased in a random way. Thus, each
readout represents an independent observer of the source population, transform-
ing the input in a non-linear fashion, with a fixed amount of memory that is given
by the membrane and synaptic time constants. However, the collective memory
(phase relations between readouts) might go well beyond the individual time con-
stants, as the advancement/delay of readouts relative to each other could last
for much longer durations than the individual time constants. A future improve-
ment of the method should consider some synapse training procedure allowing
the readouts to optimally encode information in their relative firing phases.

Second, we need to address more in depth the exact signature of the infor-
mation that is extracted by the readouts from the cortical spike trains. The high
sensitivity of the classification performance with respect to the temporal struc-
ture of the cortical source suggests that the extracted information is coded on
very fast time scales. Nonetheless, there is always the possibility that jittering
affects only the capability of the method to correctly extract the information,
even if the latter is coded on slow time scales and is thus insensitive to jittering.
However, this possibility is remote since we always retrain the classifier after
each jittering of the inputs. Retraining insures that the best possible model vec-
tors are built, given the structure of the source spike trains. To find the exact
source of the information and the relevant time scale, we need to go back to
the original spike trains, guided by the occurrences of the phase patterns that
were specific to each class (model vectors). A possibility would be to compute
”phase pattern-triggered average” of the source spike trains. In this case, one
computes an average of the source spike trains, around the time stamps where
a specific pattern occurs, thus identifying the combination of source spikes that
produced the pattern. If, indeed, a specific constellation of input spikes produced
a specific readout pattern, then the next question is how fast can the readouts
extract information? Or how much time is needed to integrate the relevant input
and reach a decision? Even more so, what is the role of oscillatory activity in
structuring these input patterns?

Finally, we conclude that using artificial spiking neurons to read out infor-
mation from cortical neurons can be extremely fruitful and opens the path for a
new generation of studies that might help us reveal the nature of the neuronal
code.
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