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Dynamical neural activity, which involves oscillatory and activity synchronization in 

neural firing, seems to have significant implications for understanding how the brain 

produces cognitive behavior. Computations based on dynamical activity require much 

more feedback information than is employed in traditional neural network approaches. 

The traditional neural network approach typically involves computation based on feed-

forward mathematical mapping from input to output. Several findings, including the 

limited correlational dimensionality of EEG activity, suggest that if dynamical neural 

activity contributes to information processing in the brain, than its processing capacity is 

very limited. I review the evidence suggesting that dynamical neural activity might be 

responsible for the limited processing capacity observed in voluntary/conscious processes 

in human cognition and propose the following hypothesis: the brain changes its 

information processing strategy from heavily relying on dynamical activity toward 

processing that relies on unidirectional mapping as learning and the development of skills 

increase (i.e. processing becomes more automatic). This transfer results in a decrease in 

the need for limited dynamically-based resources. Computations based on such a transfer 

might provide powerful information processing properties that optimize the complexity 

of the computational tasks in the brain. 
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1 Introduction 

 

 

Our understanding of how the cognitive behavior of the brain emerges from its 

computational elements (neurons) has profited from theoretical work using neural 

network simulations. Research on neural networks has had considerable success in recent 

decades. Neural nets have provided us with explanations of several brain/mind problems 

as well as a commercial technology that provides information processing based on the 

computational power of the brain. Perhaps, the most important mechanism employed in 

neural networks is the ability of several layers of units to provide mathematical mapping 

functions between input and output. A proper mapping between input and output is 

achieved by the synaptic weights between the units.  

 

However, the neural networks did not succeed in providing answers to all the questions 

about the brain and mind that we wish to answer. Although almost any phenomena on the 

behavioral level has at least one corresponding model on the neural level, neural network 

models still are not sufficiently powerful theoretical tool for neuropsychological research. 

They still do not govern most of the research in either neurophysiology or psychology. 

One possible reason is that they do not include all the important neural mechanisms that 

the brain utilizes. 
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This paper suggests a possible important role of dynamical neural activity for information 

processing in the brain. However, there is a need for caution regarding the use of the term 

'dynamical' when referring to neural activity. There is a long tradition of studying the 

dynamics of neural networks that is describable by dynamical system theory [35, 36, 37]. 

However, I will use the term 'dynamical' to refer to mechanisms that involve both 

oscillations and synchrony in neural firing. In this way, I broaden the definition of 

dynamical neural activity. Through this paper, I attempt to contrast dynamical neural 

activity with mapping in neural networks. I assign to them different processing roles in 

the brain's adaptive mechanisms. 

 

2 Mapping in neural networks 

 

The proof that neural networks have powerful mapping capabilities follows from 

Kolmogorov’s theorem which shows that a three-layer feed-forward neural network with 

n input units, 2n+1 hidden units and m units in the output layer can implement any 

continuos function of a type: 

 

 

     f:[0,1]^n -> R^m 

 

Later, it was shown that some neural networks can perform mapping from Rn to Rm with 

a sufficient number of units and/or hidden layers [10]. A particular mapping function is 

provided by fine tuning of the weights of connections between the units. In this respect, 
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the brain is typically viewed as a highly parallel, multi-layered, mapping machine that 

maps input to output. In models that attempt to explain brain mechanisms, this mapping 

power is typically accompanied with many additional mechanisms that provide additional 

computational power. One example is the adaptive resonance theory [8]. The adaptive 

resonance theory includes top-down feedback connections, orienting and gain control 

mechanisms. The dynamical activity of the brain, as defined here was, in most of the 

cases, neglected or considered an epiphenomena. 

 

For such a highly parallel mapping machine, as the brain was viewed to be, there does not 

seem to be any obvious reason why the processing would be limited in capacity. In other 

words, the architecture is such that a bottleneck in information flow does not exist [22]. 

The only reason for limited capacity in processing could be a need for sharing the same 

processing resources [16]. This paper, however, suggests that interesting information 

processing advantages that might emerge from the dynamical neural activity must have a 

very narrow bottleneck. In other words, unlike mapping, the brain is probably not able to 

perform information processing based on the dynamical neural activity in a highly 

parallel fashion. 

 

3 Oscillations and synchrony in neural firing 

 

Oscillatory neural activity has been observed for more than a century but until recently 

has been considered as an important processing mechanism by only a few scientists [13, 

6]. The synchrony in neural firing, on the other hand, is a much more recent finding [28, 
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29, 30, 34], and only recently has been the importance of both oscillatory and 

synchronous activity seriously recognized [20, 21, 7, 11]. Although it is not clear how 

much the oscillatory and synchronous activity are related, in this paper it is assumed that 

there is a correlation between the firing rhythm and the oscillatory activity observed in 

EEG [28]. The relevance of synchrony in neural firing for information processing has 

been demonstrated by showing that the neurons that code for properties of the same 

object have a high level of synchronization of action potentials. It has also been found 

that just before a motor response on a visual stimulus is executed, cells in the visual, 

parietal, and motor cortex synchronize [25]. The best explanation of the binding problem 

in human perception is the synchrony in firing [4, 34]. 

 

3.2. Computational advantages of dynamical activity 

 

One advantage of synchronous input to a cell is that the input becomes more effective 

(see Fig. 1). If cells A and B are synchronized and cell C fires with the same intensity but 

off-synchrony, than cell D could win the competition with cell E although cell E has 

stronger connections [28]. It has been also proposed and shown that synchrony in firing 

might enhance the synaptic learning process [28, 14]. 

 

An important computational advantage of the process depicted in Fig. 1 is that a specific 

pattern in synchrony in neural firing could temporarily override the learned synaptic 

weights and redirect the information flow in a new direction that has not been 

experienced or trained before. This effect is also a characteristic of voluntary or 
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conscious processes that often provide new behavior that has never before been 

experienced. 

 

4 Controlled and automatic processes in the brain 

 

The difference between controlled and automatic processes in psychology has been 

known for long time [31, 32] and is closely related to conscious versus unconscious 

processes [12]. It could be exemplified by comparing the cognitive processes while 

driving a car for the first time and driving it after years of experience. When doing it for 

the first time, most of the actions are consciously controlled and the processing has very 

limited capacity. After prolonged training, the processing becomes in large part 

unconscious (i.e. automatic) and the demand on the limited processing capacity 

significantly decreases. This enables the driver to conduct other activities in parallel 

while driving (e.g., conversation). In this case, the processing moved from conscious or 

controlled to unconscious or automatic. The result of making processing unconscious is 

the freeing-up of processing capacity so that additional activities could be performed. 

 

It is hard to provide a good measure of the size of the capacity space that is available for 

controlled processes. The best estimate of the capacity size, that psychologists have, is 

probably the Miller's ‘magic’ number 7 +/- 2 [17]. This number pertains to the number of 

items that one can hold in working memory, the number stimuli that one can attend to at 

the same time, and the number of categories that one can distinguish in absolute 

judgments. It has also been shown that with extensive practice people can overcome this 
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limitation. Significant increases in processing capacity with practice have been shown for 

memory of numbers [2], restaurant orders [5], chess pieces [3], and serial search [9]. 

 

Besides the amount of the occupied processing capacity, controlled and automatic 

processing differ in other respects. The response time for automated reactions is much 

shorter than for controlled actions. A skilled driver, for example, reacts much faster to a 

new, possibly dangerous, event than a novice. Controlled processes seem to take more of 

capacity, and are slower to execute. The disadvantage of automatic processes is that they 

are much less adaptive than controlled ones. This means that it takes relatively long time 

to develop automatic processing and a long time to unlearn them when they need to be 

changed. Conscious processes, on the other hand, are very adaptive and they allow us to 

perform behavioral actions that we have no previous experience with.  

 

A simple stimulus-response learning situation can demonstrate the difference between 

automatic and controlled processes. Both processes can result in similar behavior, say, 

closing an eyelid after a tone. One way to acquire an automatic response is classical 

conditioning where the tone could be paired with an air-puff. In this case, several 

hundreds of parings are necessary to establish the response on the stimulus. On the other 

hand, one can give an instruction to a person: `close your eyelid whenever you here the 

tone'. Both manipulations will lead to the same result: the eyelid will close after the tone. 

However, these two processes are fundamentally different. The first difference is in the 

time it takes to establish each. Whereas the automatic processes employing conditioning 

need hundreds of repetitions, the controlled process needs only one instruction or 
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decision. Thus, the adaptability of the controlled process is obvious: one can quickly 

produce new behavior that has never been experienced before. This is not the case with 

the automatic processes. Controlled processes have the same adaptability advantage if the 

behavior has to cease. Again, a simple instruction to quit responding is sufficient for 

controlled processes whereas automatic processes need again a number of extinction 

trials. 

 

Finally, controlled processes can control automatic processes. Controlled processes can 

trigger automatic ones, shut them off, or retrieve them into consciousness when the 

situation requires it (i.e. novel situation). This adaptive feature of controlled processes is 

probably one of the most powerful computational mechanisms that the brain has. 

 

5 Is dynamical neural activity responsible for controlled processes? 

 

A comparison of dynamical processing in the brain with the mapping shows the same 

three basic differences in controlled and automatic processes: speed, adaptability and 

limited capacity.  

 

5.1. Adaptability 
 

The patterns of oscillatory activity and synchrony in neural firing change quickly [29]. A 

new oscillatory pattern can be produced in several hundred milliseconds. Structural 

changes, on the other hand, take much longer time. They could take anywhere from 



 10 

several minutes to several days [27]. Therefore, the fast changes in behavior due to 

controlled processes are more likely to be caused by changes in some dynamic oscillatory 

patterns rather than by structural synaptic changes. In contrast, the relatively slow 

changes in behavior, due to the development of an automatic process, will likely result in 

structural changes in the synapses. 

 

5.2. Speed in processing 
 

The processing that takes place in a dynamical system includes feedback information. 

Processing with feedback information is slower than one-directional, feed-forward 

processing that takes place in mapping processing. Therefore, the slow processing in 

controlled processes could be attributed to the time needed for a dynamical system to 

reach a new pattern of oscillations or synchrony patterns after a stimulus is presented. 

 

5.3. Limited processing capacity 
 

Mapping processing does not have an obvious limitation on processing capacity. In other 

words, many separate neural network modules can receive input from the same input and 

process it in parallel, without disturbing each other. They can also submit their results to 

the same output module without slowing down each other [22]. On the other hand, there 

are several sources of evidence that suggest that the dynamically based processing is 

narrowly limited in its processing capacity. In other words, it seems that there is always a 

small number of separate neural, concurrently existing, groups which contain 
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synchronized neurons. Attempts to simulate synchronous neural firing result in a small 

number of separate groups [11]. More direct evidence is provided from EEG recordings. 

This evidence comes from the phase space reconstruction of EEG time series and the 

estimation of the embedding dimension. The embedding dimension represents the 

minimal number of differential equations necessary to reproduce the time series. In our 

case, a group of neurons that oscillate together could be regarded as one differential 

equation in the system. The embedding dimension, therefore, gives a rough estimate of 

the number of separate neural groups oscillating at the same time. Analyses have shown 

that the embedding dimension varies between 3 and 10 [1, 26]. If one group of oscillating 

neurons provides a temporary change in overall processing, than the number of those 

changes in the same time is limited to a one-digit number. It is interesting to note that the 

embedding dimension for EEG is in the same range as the psychological measure for the 

maximum capacity for controlled processes (i.e., 7 +/- 2).  

 

From the comparison of the processing characteristics of controlled and automatic 

processes on the behavioral scale and mapping and dynamical processing on the cell 

scale of brain’s behavior it follows that: controlled/conscious processes rely more on the 

dynamical neural activity than do automatic/unconscious processes.  

 

 

 

6 Derived hypothesis 

 



 12 

There are several hypotheses that follow from the proposed role of dynamical activity for 

controlled processes.  

 

6.1. Harder tasks have larger dimensionality 
 

The tasks that are more difficult require more voluntary effort, and should require more 

temporary changes in the neural nets implemented by dynamical processes. The 

embedding dimension of the underlying activity (e.g., the number of oscillating neural 

groups) should therefore be larger for more difficult tasks. There is indirect support for 

this hypothesis that comes from recent research on the embedding dimension of the 

reconstructed phase space of repetitive hand movements. Mitra et al. [18] have shown 

that repetitive hand movements produce chaotic activity with embedding dimension 

between 3 and 4. Swinging a heavier stick produces a smaller dimension than swinging a 

light stick. The participants, however, judge swinging the heavier stick as being a much 

easier task than swinging the light stick [24]. This finding provides only indirect support 

for the hypothesis because dynamical neural activity was not measured (they only 

measured the dynamical activity of hand movements). The notion that the brain couples 

with the environment through its dynamical activity [7, 15, 33] suggests that the 

complexity of the dynamical activity of the movements reflects the complexity of the 

neural activity that produces those movements. 

 

6.2. Transfer from dynamical to mapping processing 
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Because controlled processes rely more on dynamical processing, and automatic 

processes rely more on mapping, during practice when controlled processing becomes 

automatic, the dynamical processing should be replaced with mapping. In other words, 

with automation of an activity, the ratio of involvement of dynamical and mapping 

processing should change so dynamical processing becomes involved to a lesser extent. 

Greater reliance on mapping frees the limited processing capacity of dynamical 

processing for additional parallel processes. This prediction receives, albeit indirect, 

support from the hand movement research. Mitra at al. [19] have found that with practice 

the dimensionality of repetitive hand movements decreases. 

 

6.3. Automatic processes that are under conscious control 
 

 

Some automatic processes are under voluntary control, meaning that they can become 

conscious if it is necessary. Eye-blink and breathing are examples of processes that are 

very automatic but that can be brought under conscious control and therefore be 

controlled by a conscious decision. Other automatic processes (like patellar reflex, many 

processes in autonomous nervous system (ANS) and emotional responses) cannot be 

directly under conscious control.  

There also probably is a difference in the neural processes that underlay consciously 

controllable and not controllable automatic processes. The view on the controlled and 

automatic processes proposed here suggests an explanation: If voluntary processes 

perform control through dynamical activity than automatic processes that can be 
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consciously controlled should employ, to some extent dynamical activity (i.e. oscillations 

and synchrony in neural firing). If they employ dynamical processes, than they should be 

subjected to the limited processing capacity, at least to a small extent. The support for 

this prediction comes from eye-blink research. It has been found that the eye-blink reflex 

decreases its activity if a second hard task is given to participants. Stern [23] had 

participants hold six digit numbers in working memory while eye-blinks were recorded. 

The average time between two eye-blinks significantly decreased compared to a situation 

where participants had to memorize only two items. The eye-blink reflex is therefore 

subjected to limited processing capacity. However, the reflexes that are not under 

conscious control, should not be affected by a secondary task. There are no experimental 

data that I am aware of that would suggest and answer to this prediction. 

 

 

 

 

7 Conclusions 
 

The differences in some of the processing characteristics between one-directional 

mapping in neural networks and the dynamical activity in the brain seem to match the 

difference in processing characteristics between automatic and voluntary processing. In 

addition, experimental support exists for several hypotheses derived from an assumption 

that this match is not coincidental. It appears, therefore, that the brain uses heavily 

dynamical processing of information in novel situations where conscious processing is 
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necessary. Familiar, previously experienced, processing on the other hand seems to rely 

much less on dynamical activity but more on the learned one-directional mapping. 

 

The transfer from dynamical to mapping processing with experience has implications on 

the optimization of computational complexity: The brain adapts so that in familiar 

situations it executes computations by involving a small amount of resources. In novel 

situations, however, the brain seems to use larger amount of resources by combining the 

already learned mappings with the flexibility of the dynamical processing. 
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