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Abstract

When computing a cross-correlation histogram, slower signal components can hinder the detection of faster components, which are
often in the research focus. For example, precise neuronal synchronization often co-occurs with slow co-variation in neuronal rate
responses. Here we present a method — dubbed scaled correlation analysis — that enables the isolation of the cross-correlation
histogram of fast signal components. The method computes correlations only on small temporal scales (i.e. on short segments of
signals such as 25 ms), resulting in the removal of correlation components slower than those defined by the scale. Scaled correlation
analysis has several advantages over traditional filtering approaches based on computations in the frequency domain. Among its
other applications, as we show on data from cat visual cortex, the method can assist the studies of precise neuronal synchronization.

Introduction

A common problem with the use of the cross-correlation histogram
(CCH) is the presence of correlated signal components that occur with
a slower time course than those of interest. For example, when precise
neuronal synchrony is investigated, a component with a 25 ms time
scale (e.g. 40 Hz gamma oscillation) may be considered interesting,
whereas a component with a 100 ms time scale or larger (< 10 Hz) —
here referred to as rate co-variation — would normally be considered
uninteresting. Rate co-variation, also known as noise correlation
(Averbeck et al., 2006), can impair the study of precise neuronal
synchrony by modulating the size of the center peak in the CCH
(Brody, 1999). Center peaks produced by rate co-variation are broader
than those produced by neuronal synchrony but, nevertheless, the two
processes are often difficult to dissociate. In particular, rate co-var-
iation becomes a problem when it co-exists with synchrony (Staude
et al., 2008). For example, if changes in the strength of synchroni-
zation (such as those induced by stimulus properties, e.g. Gray et al.,
1989; Biederlack et al., 2006) are investigated, in a case of peak
superposition, it is difficult to tell whether a change in the size of the
peak is due to changes in the strength of synchronization or,
alternatively, due to a change in the strength of rate co-variation.
Thus, for the analyses based on CCHs, it is an advantage if slow rate
co-variation can be separated efficiently from the faster neuronal
synchronization.

The most widely used method for this purpose is the so-called shift
predictor (SP) (or shuffle predictor) (Gerstein & Perkel, 1972; Gray &
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Singer, 1989; Munk et al., 1995; Nowak et al., 1999). A SP is a CCH
computed between pairs of signals recorded at different times (i.e.
from different experimental trials and in response to the same
stimulus). The assumption underlying the SP is that the slow temporal
dynamics of rate co-variation does not change across repeated trials
(i.e. the dynamics is time-locked to the stimulus onset) and, thus, the
SP reveals this stimulus-evoked correlation in a center peak. In
contrast, precise neuronal synchrony vanishes from a SP, as these
correlations are usually generated by internally-timed processes not
locked to the stimulus onset. The contribution of neuronal synchrony
can then be isolated by simply subtracting from the standard CCH the
stimulus-locked component estimated by the SP (Gerstein & Perkel,
1972).

Unfortunately, SPs do not provide a complete account for rate
co-variations. Changes in neuronal firing rates are not always
stimulus-locked across repeated trials and every deviation from such
regularity results in an underestimation of the magnitude of rate co-
variation (e.g. Brody, 1999). Example sources of rate co-variations
that lack time-locking to the stimulus are changes in firing rates, which
can occur due to fluctuations of attention, eye movements, spontane-
ous changes in the cortical states or non-stimulus-locked oscillatory
rhythms slower than those supporting precise neuronal synchroniza-
tion. Another problem with SPs is that, in some experimental designs,
repeated trials do not exist and, thus, it is not even possible to define a
SP, as is the case for example in the analyses of spontaneous neuronal
activity (Beggs & Plenz, 2003; Ikegaya ef al., 2004; Hahn et al.,
2010). Therefore, methods better than SPs are needed to separate rate
co-variation from precise neuronal synchrony. Such methods already
exist for estimating the significance of joint spike events detected
across a larger number of neurons (Griin et al., 2002; Pipa et al.,
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2008). Also, the methods based on coherence can estimate the strength
of synchrony between pairs of spike trains for a given frequency range
(Fries et al., 1997; Pesaran et al., 2002). However, these methods
cannot be used to construct CCHs as they either do not provide a
means for removing the contributions of the slow components or, if
they do, as we will show, they alter the spike trains such that the
original relationships between the signals cannot be reconstructed
accurately. The present work proposes a method that is designed for
use with CCHs and auto-correlation histograms, dubbed scaled
correlation analysis (SCA). The method attenuates the contributions
of the slow component of a CCH (e.g. slow rate co-variation) and
reveals the cross-correlation for the fast components of the signals
(e.g. strength of precise neuronal synchronization).

Materials and methods

The experimental methods and setup were similar to those reported in
several other studies (Biederlack et al., 2006; Nikoli¢, 2007; Schnei-
der & Nikoli¢, 2006; Schneider et al., 2006; Nikoli¢ er al., 2009).
Here, we report the methods in a shorter form.

Preparation and recordings

In two cats, anesthesia was induced with ketamine (0.2 ml/kg, 5%
diluted) and, following the tracheotomy, was maintained with a
mixture of 70% N,O and 30% O, and with halothane (0.6%).
To prevent eye movements, two cats were paralysed with pancuro-
nium bromide applied intravenously (Pancuronium, Organon,
0.15 mg/kg/h). After the completion of the experiment, the animal
was killed by a 3 ml dose of Narcoren (pentobarbital) applied
intravenously. All of the experiments were conducted according to
the guidelines of the Society for Neuroscience and German law for
the protection of animals, approved by the local government’s ethical
committee and overseen by a veterinarian.

On each of the 16 channels, neuronal activity was recorded
extracellularly from multiple neurons (multi-unit activity) by using a
silicon-based probe (channels organized in a 4 X 4 spatial matrix)
supplied by the Center for Neural Communication Technology at the
University of Michigan. The probe had minimal intercontact distances
of 200 um (0.3-0.5 mega Ohm impedance at 1000 Hz). Electroen-
cephalogram signals were recorded with intracranial silver-ball
electrodes placed above the visual cortex. Signals were amplified
1000x%, filtered between 500 Hz and 3.5 kHz, and digitized with
32 kHz sampling frequency. The probe was inserted into the cortex
approximately perpendicular to the surface, which allowed recording
simultaneously from neurons at different depths and with different
orientation preferences. In one cat we used nine multi-unit activity
signals recorded simultaneously that responded well to visual stimuli
and had orientation selectivity that was appropriate for eliciting large
responses with the presently used stimuli. All of the receptive fields
were overlapping and were thus all stimulated simultaneously by a
single stimulus.

Visual stimulation

Stimuli were presented on a 21 inch computer monitor (Hitachi
CMBI3ET) with 100 Hz refresh rate. The software for visual
stimulation was the stimulation tool, ActiveSTIM (http://www.Activ-
eSTIM.com). The stimuli were presented binocularly and the eyes
were fused by mapping the borders of the respective receptive fields
and then aligning the optical axes of the eyes with an adjustable prism

placed in front of one eye. The orientation preferences of the multi-
units used in the present analysis were determined by sinusoidal
gratings drifting in 12 different directions. Responses were analysed to
stimuli that consisted of a single moving bar (Figs 7C and H, and 8A),
grating stimuli with either sinusoidal (Figs 7A and F, and 8B-E) or
rectangular luminance profiles (Fig. 7D and I), or plaid stimuli
constructed by overlapping two rectangular gratings (Fig. 7E and J).
With the exception of the single-trial analysis in Fig. 8F, the responses
for 20 stimulus presentations were averaged, each in a duration of 2-5 s.
To create CCHs smoother than those obtained by 20 stimulus
presentations, in several plots we averaged responses to several different
stimulation conditions (Fig. 7A, B, F and G). The orientation and speed
of all presented stimuli were optimal for eliciting large rate responses.

Artificial continuous signals

To generate artificial continuous signals (i.e. in which samples can
take any real value), we used combinations of sinusoid modulated
components and high-frequency noise. We first generated two perfect
sinusoidal signals, one having a low (ws;ow) and the other a high
(wgasT) frequency, and constructed the reference signal as a sum of
these two components, as follows

SSLow(t) = asLow - Sin(wSLOW : f) (1)
Seast(f) = apast - sin(wpast - 1) (2)
A; = SsLow () + Srast(?) (3)

where 7 is time, as;ow and apast are the amplitudes of the slow and
fast component, respectively, and ws; ow and wgast are the (angular)
frequencies of the slow and fast component, respectively.

The target signal was generated by mixing Sspow and Sgast With
noise, such as to obtain correlated versions of slow and fast
components, which were then subsequently summed

1 —rspow? - y(t) + reast - Seast(?)

)

B(t) = rsLow - SsLow (t) +

+ 1 —}"FASTZ'Z(I)

where rsiow and rpast are the correlations of the slow and fast
components, respectively, and y(7) and z(#) are noise signals drawn from
uniform distributions with zero mean and amplitudes equal to 1.25 X
the amplitude of their respective sinusoidal components, Ss; ow and
Seast- When the amplitudes of the slow and fast components were
scaled, the amplitude of the noise functions was also scaled accordingly.

Artificial binary signals

To generate artificial binary signals (i.e. values 1 or 0), we used non-
homogeneous Poisson processes, in which the likelihood of firing a
spike in a 1 ms bin, M, was given by a scaled sum of sinusoidal
probability functions, as follows

P(l) = max[(aSLow . Sil’l(u)SLow . l) -+ ApAST * Sil’l(u)FAST . t)),O] (5)

desired _rate 1
T JP@®H 1000 (©)
M(5) = R-P(1) 7)

where P is the unnormalized probability function, 7 is time, asy ow and
apast are the amplitudes of the slow and fast component probability
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functions, respectively, wsiow and wgast are the (angular) frequen-
cies of the slow and fast component, respectively, R is a scaling factor
that sets the desired average firing rate, and M is the actual probability
function used to generate spikes.

The probability function P(f) was a rectified sum of sinusoids, i.e.
when the sum was negative it was rectified to 0. Desired firing rates
were obtained by computing the integral of P and deriving a scaling
factor R of the firing probability function M (see Eqns 6 and 7). At
each moment in time, #, a spike was produced if an independent draw
from a uniform random distribution in the range [0...1] yielded a
value < M(7). In previous studies (Moca et al., 2008; Schneider &
Nikoli¢, 2008; Havenith ef al., 2011) it was demonstrated that non-
homogeneous Poisson processes produce artificial CCHs with prop-
erties similar to those of real CCHs.

Results

We first introduce the algorithm for the computation of SCA, and then
the results of its applications on simulated data with known correlation
properties. Next, SCA is applied to real neurophysiological data
recorded from the cat visual cortex. Finally, we compare SCA with
other techniques designed for the estimations of synchrony and that
are based on cross-spectrum and coherence.

Computation of scaled correlation and its principles of operation
Correlations in restricted sampling ranges

The mechanism underlying the removal of slow components in SCA
relies on the reduction of the correlations that emerge from the slow
components while retaining the correlations of the fast components.
This is achieved through restrictions in the sampling range of the
original data. One characteristic of correlation measures, such as
Pearson’s r, is that any reduction in the variability of a sample relative
to the variability in the population affects the measured strength of
correlation. Depending on the structure of the data set, the estimate
may either decrease or increase relative to the one with full variability,
including even the possibility that the correlation changes its sign
(Alexander et al., 1984; Millsap, 1989; Held & Foley, 1994; Aguinis
& Whitehead, 1997; Raju & Brand, 2003). In Fig. 1A we show an
example scatter plot in which two restricted samples (created by
dividing the scatter into two unequal halves by the vertical dashed
line) exhibit much smaller variability than the entire sample.
Importantly, the correlations in the sub-samples are reduced relative
to that in the entire sample. In Fig. 1B we show an example of two
continuous signals (i.e. data sets with temporal structure), which are
more relevant for the present purposes. The slow components of these
two signals are negatively correlated (when one increases, the other
decreases) but, as indicated by the zoom-in, the fast components can,
at the same time, be positively correlated (concomitant increases and
decreases). Scaled correlation can be used to focus the analysis on this
fast component. Correlations between continuous signals can also be
shown in a scatter-plot-like diagram, known as a phase diagram. An
example for another pair of continuous signals is shown in Fig. 1C.
Here the time flows along the line. In this plot, a restriction in the
sampling range is made by cutting out segments of data along the time
axis, which is illustrated by the alternate blue and red colors. Although
the overall plot indicates a negative correlation (it is oriented from top-
left to bottom-right), the segments are predominantly correlated
positively (oriented bottom-left to top-right). In binary data (i.e.
neuronal spiking activity), restriction of the sampling range can also
alter correlations, as illustrated in Fig. 1D. Although the entire
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FiG. 1. Effects of restricted sampling on coefficients of correlation. (A) An
illustration of how a reduction in sample variance can decrease the measured
correlation in a scatter plot. Here, the sample variance is reduced by setting a
threshold on the x-axis (red dashed line). (B) An example of restricted sampling
by selecting only a sub-segment of continuous signals. The correlation is
negative for the entire segment and the correlation is positive for the sub-
segment. (C) An example similar to B but shown as a phase plot. In case of
LFPs, the two axes would indicate voltage, whereas time flows along the line.
The entire data set exhibits a negative correlation, whereas the sub-segments
(alternating red and blue colors) have predominantly positive correlations. (D)
Segmentation of binary processes (e.g. neural spiking events) works in the
same way. It can also reduce variability and hence produce changes in
correlation strength. For interpretation of color references in figure legend,
please refer to the Web version of this article.

segment exhibits a negative correlation, both sub-segments exhibit
positive correlations. Similar segmentation processes are the basis for
the computation of SCA, as explained next.

The algorithm for computing scaled correlation analysis

To remove slow components, scaled correlation does not apply
filtering of signals prior to the computation of correlation. Rather,
scaled correlation can be understood as an algorithm that filters
correlations directly by the means of restricted sampling, allowing
only the correlations that occur at a given time scale or smaller to enter
the calculation. Usually, restricted sampling is considered undesirable
and has been studied in the context of estimating a correction that
recovers the original correlation of the non-restricted sample (e.g.
Alexander et al., 1984; Millsap, 1989; Held & Foley, 1994; Aguinis &
Whitehead, 1997; Raju & Brand, 2003). Scaled correlation, in
contrast, takes advantage of restricted sampling, creating it intention-
ally in a controlled manner in order to estimate the correlations only
for a sub-set of time scales.

To compute scaled correlation for the central bin in the CCH (i.e.
without phase offset between the signals), the signals are cut into a
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F1G. 2. Computation of SCA. (A) An illustration made on LFP signals recorded from two electrodes simultaneously. Signals are segmented into small pieces of
length s (here, s = 40 ms). For each segment, a normalized measure of correlation is computed, r, and the values are averaged over longer stretches of the signal,
resulting in 7. (B) To compute a complete CCH with all time shifts, ¢, the segmentation must always be applied anew after each shift. (C) For simulations in D-F
and in Figs 3 and 4, each signal is composed by the addition of two continuous components: a regular slow one and a noisy fast one. The added noise always had
high frequency (1 kHz). Hence, the fast components were correlated with r < 1.0, the actual correlation depending on the amplitude of noise. In contrast, the slow
components were always correlated perfectly (r = 1.0). (D) A classical CCH computed for a pair of signals generated by the methods in C. Both slow and fast
components are visible. (E) Scaled correlation with s larger than the period of the slow component produces a cross-correlation plot of identical shape to the classical
CCH. (F) When the scale is reduced to the period of the fast component, the contribution of the slow component to the CCH is removed and the correlation properties
of the fast component are revealed much more accurately. The horizontal dashed line indicates the correlation inserted into the fast components, which should be

recovered by the analysis.

series of adjacent segments of length s, and then coefficients of
correlation are computed for each segment (Fig. 2A, left). The
correlation coefficients are subsequently averaged across all segments
in a trial, and these results are averaged next over repeated
experimental trials (if any). In the present study, all of the averaging
of correlations was made without Fisher’s z-transformations of
r-values (Fisher, 1915) (see a later Discussion and Appendices A
and E on the pros and cons of using such transformations).

Thus, the scaled coefficient of correlation 7 at the scale s is given by

39
s =— Vi, (8)
K k=1

where 7, indicates the correlation computed for segment &,
k € [1...K]. K is the number of time segments that can be fit into
the total length of the signal, T, without overlap between the segments,
and is given by

—) .

For example, for a total time period 7' =2 s and segment size
s =25 ms (a value suitable for measuring synchrony supported by
oscillations of 40 Hz or higher), the total time period will be divided into
K =2000/25 = 80 segments, and for each segment another value of r
will be computed (later we also discuss cases in which some segments
are skipped due to missing data). The duration of the segment is denoted
as the scale of the analysis. Correlation coefficients other than r may also
be used (e.g. Spearman’s rho described in Appendix B).

As in the regular CCH, the above calculation also needs to be
repeated for all necessary time shifts, ¢, between the reference and the
target. To obtain proper estimates of correlation for all possible shifts,
it is necessary to segment the signals only after the target signal is
shifted (as indicated in Fig. 2B). These repeated segmentation
processes, i.e. following each shift, allow a scaled CCH to be
computed legitimately for shifts that are larger than the scale of the
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analysis, i.e. ¢ > s, which is the case for most of the CCHs shown in
the present study (e.g. shifts of + 80 ms with s = 30 ms). The final
CCH is constructed simply by plotting 7 as a function of the time
offset, ¢ (e.g. + 80 ms in steps of 1 ms).

The chosen duration of the segments, s, is thus central to the present
analyses as it determines the time scales of the signal components that
will be preserved (the components with time scale < s) or removed
(those of the time scale > s). The segmentation process reduces the
variance only for the slow components, whereas the fast components
remain to be sampled with their full variance. This is illustrated in
Fig. 2C, where the variability (vertical dispersion) of a composite
signal is smaller within a 20 ms than within a 100 ms window
(range; < range,). See also the proof in Appendix C.

Mathematically identical cross-correlation functions are used to
compute the correlogram for binary signals (e.g. action potentials) and
continuous signals [e.g. local-field potentials (LFPs)] or for a
combination of the two. However, traditionally, in statistics the
correlations for each signal type (or their combination) have different
names. For the pairs of binary signals, the measure is known as the phi
coefficient of correlation and for the combination of binary and
continuous signals, it is known as the point-biserial coefficient of
correlation. Details on how Pearson’s r can be calculated most speed-
efficiently for various types of signals are given in Appendix B, which
also provides information on how to access freely Matlab and C++
libraries for the calculation of SCA.

Example calculation of scaled correlation analysis

Example applications of SCA to simulated continuous signals are
shown in Fig. 2C-F. Each of the signals in a correlated pair consisted
of two oscillatory components, one component having a fast and the
other a slow oscillatory rhythm (Fig. 2C) (usually, 5x ratio in
oscillation frequencies). The examples in Fig. 2D-F were calculated
with the maximal possible correlation between the corresponding slow
components, » = 1.0, and a medium-range correlation between the
corresponding fast components, r = 0.6.

The goal of the analysis was to accurately extract the correlation of
the fast components and to remove, as much as possible, the contributions
of the slow components. This was obviously not possible by computing a
CCH without the use of scaled correlation (referred to here as classical
CCH), as the resulting CCH was reflecting the superposition of the
slow and fast components (Fig. 2D). A similar result was obtained when
SCA was computed with a large scale that corresponded to the time scale
(i.e. oscillation period) of the slow components (s = 100 ms) (Fig. 2E).
In this case, the strength of correlation for the fast component at the zero
phase offset was overestimated (r = ~0.80 instead of 0.60) and the
shape of the correlogram was the same as in the classical CCH (as in
Fig. 2D), reflecting large contributions of the slow components. How-
ever, when the scale was shortened to the size that matched the time
constant of the fast components (s = 20 ms), the contribution of the slow
component was almost entirely eliminated despite its large correlation,
and the shape of the resulting CCH was dominated by the fast
components (Fig. 2F). The correlation estimated at the center peak
(r = 0.5996) was very close to its true value. This illustrates that SCA
with the scale larger than the time constants of signal components
produces a correlogram of a shape identical to a classical CCH, whereas a
decrease in the scale changes the shape to reflect the fast components.

How does scaled correlation analysis relate to a normalization of
a cross-correlation histogram?

The absolute values on the y-axis depend on the voltages measured by
field potentials or, in the case of spiking signals, on the firing rates of

Scaled correlation analysis 5

neurons. Hence, for comparisons, such CCHs often need to be
normalized by various methods, which may involve fitting a Gabor
function (Ko6nig, 1994), or a computation of Pearson’s r between spike
trains (e.g. Lamme & Spekreijse, 1998). In the latter case, a single
correlation coefficient is computed for the entire length of the analyzed
signals, multiple 7’s being averaged only between repeated trials.
Hence, this form of normalized CCH corresponds to scaled correlation
with s equal to the length of the trial. As shown in Fig. 2D and E,
given that s is equal to the total length of the signal, SCA returns a
CCH of the shape that is identical to the classical CCH (proof
provided as a part of Appendix D). Normalizations based on non-
segmented data do not remove the slow components. They act only as
scaling factors for the y-axis of the CCH. To remove a slow
component from correlation it is necessary to use segments smaller
than the period of that component. In that way, the correlation at each
segment is normalized prior to the averaging.

Mathematical theory of scaled correlation

In Appendix E we provide a proof that, if all segments have identical
means and variances, the average Pearson’s correlation obtained with
small s is identical to the value of the single correlation coefficient
computed across the entire signal (i.e. with maximum segment size, ).
This result justifies the averaging procedure in Eqn 8. Note also that
this identity does not hold if Fisher’s z-transformation is applied to the
averaging process.

In Appendix D, we show analytically that scaled correlation
removes the contribution of the slow components by estimating its
contribution through a form of low-pass filtering and subtracting it
from the total correlation. In effect, scaled correlation produces
implicit low-pass filtering that is similar to a moving average filter.

Analysis of simulated signals
Pairs of continuous signals

By using simulations similar to those shown in Fig. 2C-F, we
investigated systematically the importance of, and the dependencies
between, the following three factors: (i) the segment size, s, (ii) the
ratio between the amplitudes of the fast and the slow components,
and (iii) the ratio of the oscillation frequencies of the two
components.

To investigate the application on continuous signals we used both
signals with a single oscillatory component (Fig. 3A and B) and
signals composed of two oscillatory components (Fig. 3C-E). The
composed signals were generated as illustrated in Fig. 2C (see also
Materials and methods). Each data point in Fig. 3A-E is calculated on
a 5 s simulated signal and, to focus the analysis on the magnitudes of
correlations, only the values of the center peaks of scaled CCHs (i.e.
@ = 0) are shown in these plots. In addition, representative complete
CCHs are shown in Fig. 3F-J.

Single component. The relationship between segment size and
measured strength of correlation was investigated for two different
oscillation frequencies of a single oscillatory component (50 and
10 Hz) and four levels of correlation strength (r = 0.2, 0.4, 0.6 and
0.8; color coded). In Fig. 3A and B it can be seen that the
correlations were estimated correctly only if the segment sizes were
equal to or larger than the period of the oscillatory rhythm (dashed
vertical lines). If the segment sizes were smaller than that, the
correlations were always reduced, the magnitude of the reduction
depending on the degree of discrepancy between the period of the
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FIG. 3. Analysis of the degree to which SCA attenuates the contributions of slow components in simulated continuous signals. Signals have one oscillating
component of either 50 Hz (A) or 10 Hz (B). The color code indicates the strength of correlation inserted into the signals (r = 0.2—0.8) and the vertical dashed line
indicates the segment size that corresponds to the period of the oscillation cycle. (C—E) Signals with two oscillatory components composed as described in Fig. 2C.
(C) The strength of correlation between high-frequency components (50 Hz) was manipulated (color coded), whereas the correlation between the slow components
(10 Hz) was kept constant (» = 1.0) (s = 20 ms). (D) The frequency of the slow component was manipulated (color coded), whereas the correlation between fast
components was kept constant (r = 0.8; dashed line) (s = 20 ms). (E) Scale size was manipulated (color coded), the correlations and frequencies of slow components
being constant (r = 0.8 and f = 10 Hz, respectively). The crosses indicate data points for which cross-correlograms are shown in F-J. (F) CCHs for the data points in
A. Gray, s = 7 ms; black, s = 30 ms. (G) CCHs for the data points in B. Gray, s = 30 ms; black, s = 100 ms. (H) CCHs for the data points in C. Gray, amplitude
ratio = 2; black, amplitude ratio = 4. (I) CCHs for the data points in D. Gray, f(slow) = 2 Hz; black, f(slow) = 8 Hz. (J) CCHs for the data points in E. Gray,
amplitude ratio = 0; black, amplitude ratio = 8. (K) Distribution of r-values across 250 segments of duration s = 20 ms used to calculate the center peak of the CCH
in H (gray). For interpretation of color references in figure legend, please refer to the Web version of this article.

signal component and the segment size. Importantly, a small Two components. Signals composed of two oscillatory components
discrepancy between the scale and the signal period does not much consisted of varying degrees of correlation (rgast = 0.2-0.8) for the
affect the estimated correlation — a property of SCA that should be fast component (50 Hz) and fixed correlation (rsp ow = 1.0) for the
considered when choosing the segment size and when interpreting varying frequencies of the slow component (2-10 Hz). A variable that
the results of an analysis. strongly affected the measured correlation was the ratio between the
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correlation between the fast components (color coded). (D) Instead of the correlation strength as in E, the sizes of the scale were manipulated (color coded). (E)
Similar to C and D but the frequency of the slow component was manipulated (color coded). For interpretation of color references in figure legend, please refer to the

Web version of this article.

amplitudes of the slow and fast components, and this is indicated on
the x-axis of all plots. If not specified otherwise, the scale of the
analysis was s = 20 ms.

The finding that the relative amplitude of components strongly
determines the measured correlation is shown in Fig. 3C, where the
frequency of the slow component was set to 10 Hz. SCA attenuated
the slow components well when their amplitude was similar to that of
the fast components. However, when the slow component had
extremely large amplitudes (i.e. > ~4x larger), the measured corre-
lation remained dominated by the slow components.

This result did not depend much on the true correlations between
the fast components (Fig. 3C), each value of r being affected in a
qualitatively similar way. However, the relative difference in the
oscillation frequencies was an important variable (Fig. 3D). As this
difference increased, increasingly larger differences in the amplitude
could be absorbed by SCA and reast could be estimated accurately.
For example, 2 Hz components could have as much as 12X larger
amplitude than that of 50 Hz components and still not prevent an
accurate estimation of the correlation between the 50 Hz components
(red curve in Fig. 3D).

Finally, the choice of the scale, s, affected the measured correlations
between multi-component signals similarly to the single-component
signals. To recover the original correlation between the fast components
(r = 0.8), it was necessary that the scale was close to the oscillation
period of that component (ideally, 20 ms for 50 Hz; Fig. 3E). However,
the scale should not be much smaller, as it then also attenuates the
correlation between the fast components (red line in Fig. 3E).

Representative examples of auto-correlograms and cross-correlo-
grams are shown in Fig. 3F-J, which correspond to the data points
marked with crosses in Fig. 3A-E, respectively. The choice of scale, s,
does not affect the overall shape of the CCH when signals have only
one component, but only the magnitudes of measured correlations are
affected (Fig. 3F and G). In contrast, for multi-component signals the
shapes of CCHs can change drastically as a function of scale. As the
contributions of slow components to the measured r reduce with a
decrease in s, so does their contribution to the shape of the
correlogram (Fig. 3H-J).

Even when the average 7, is computed accurately it is a result of
many r-values that can vary considerably across individual segments.
For continuous signals, these distributions are also unimodal. An
example distribution is shown in Fig. 3K, which has an average of
0.65 and corresponds to the center peak of the CCH in Fig. 3H (gray
curve).

The contributions of slow and fast components to a CCH can be
quantified by computing the fast Fourier transform (FFT) of a
correlogram (here, this was done by computing correlograms for lags
between + 512 ms and considering the leftmost 1024 out of 1025
points for the FFT). For example, scaled correlograms applied to
two-component signals with s = 100 and s = 20 ms in Fig. 4A (only
parts of the correlograms are shown, spanning =+ 80 ms); the
magnitude spectrums are shown in Fig. 4B. With a long segmen-
tation window, the magnitude of the fast and slow component is
about the same (black curve). However, with the segmentation
window that favored the fast component, the magnitude of the fast
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component became about an order of magnitude higher than for the
slow component (gray line).

The sizes of the peaks in the magnitude spectrum of the correlogram
scale with the square of the amplitude of the slow and fast components
(assuming that the target and reference have components of identical
amplitudes). This follows from the Wiener—Khinchin theorem, which
states that the Fourier transform of the auto-correlation function is
equivalent to the power spectrum. Therefore, the magnitude spectrum
of the cross-correlation is equivalent to the cross-power spectrum
[described by Blackman & Tukey (1958)] and, thus, the magnitude
peaks scale with the square of the amplitude of signal components. In
scaled cross-correlograms, changes in the magnitude spectrum reflect
the changes in the shape of the CCH.

To investigate systematically the relation between the spectral
magnitude peaks of the correlogram, the properties of the signals, and
the scale of the analysis, we plotted the ratio between the amplitude of
the signals vs. the square root of the ratio of their magnitudes at 11 and
50 Hz (the two frequencies were chosen not to be integer multiples of
each other to avoid harmonics in the magnitude spectrum from
interfering with the calculations of peak ratios) as a function of
correlation between the fast components (with s = 21 ms; Fig. 4C),
segment size (With reast = rspow = 1.0; Fig. 4D), and frequency of
the slow component (with s =21 ms and rgast = rspow = 1.0;
Fig. 4E).

The relationships between the two types of ratios were linear in all
cases, as indicated by straight lines in Fig. 4C-E. Thus, the square root
of the ratio between the FFT magnitudes in the scaled CCH was
always a linear function of the ratio of the amplitudes of the signal
components. The correlations, segment sizes and frequencies affect
only the slopes of these linear relationships. The less SCA removes the
slow component, the closer is this slope to 1.0 (indicated by dashed
lines in Fig. 4C-E). The slope approaches 1.0 as the correlation of the
fast component approaches 0.0 (Fig. 4C), as the segment size
approaches the period of the slow component (Fig. 4D), and as the
frequency of the slow component approaches that of the fast
component (Fig. 4E). This analysis indicates that, in continuous
signals, SCA operates well across different parameter values and can
hence be used as a versatile tool for removing slow components from
CCHs.

Pairs of binary signals

Unlike the above examples of continuous signals, in which signal
components were based on oscillatory patterns of given frequencies,
we generated the spike events using non-homogeneous Poisson
processes, i.e. probabilities modulated by a certain envelope function
(half-sinusoidal in our simulations, Fig. SA) (see also Materials and
methods). The resulting spike trains can be represented as sequences
of 1’s and 0’s (Fig. 5B), indicating the presence and absence of spikes
within each time bin (we used bins of 1 ms in all cases). Therefore, the
oscillatory components are not inserted into the signal directly but,
rather, ‘‘modulate’” another high-frequency signal. See Materials and
methods for more details on generating artificial spike trains for the
present analyses.

When Pearson’s r is applied to binary signals it is known as the ¢
(phi) coefficient of correlation. Calculation can be made quickly based
on a contingency table containing the counts of all four possible
combinations of spiking events across the bins (Table Bl in
Appendix B): those that contribute to positive correlations, either
both neurons fire or both neurons are silent (entries b and c,
respectively); and those that contribute to negative correlations, only
one neuron fires and the other is silent (entries a and d). The resulting

correlation is a net effect of those four counts, as described in Eqn B3
(Appendix B).

Empty segments. When computing scaled correlation between pairs of
binary signals it is necessary to ensure a proper treatment of empty
segments of the spike trains. As the duration of the segments reduces,
inevitably, within many segments, one or both spike trains will not
have a single spike (Fig. 5B). In those cases, ¢ cannot be calculated
due to a division by zero (i.e. in Eqn B3, Appendix B, either the term
¢+ dora+ cis0). In other words, a signal without spikes does not
have variance and, without variance, no correlation can be defined.

A mathematically proper approach is to define the value of
correlation for this segment as not-available or not-a-number (e.g.
indicated as NaN in Matlab), which means that these segments should
not be taken into the average. Consequently, the number of averaged
segments is smaller than the total number of segments K. The smaller
the s, the larger proportion of segments is expected to be removed
from the analysis. This can be seen from the fact that, for a Poisson
process, the probability of observing no events in a given interval
drops exponentially as a function of the size of the interval and the rate
of the process.

The alternative would be to assign zero correlation values to these
segments. This approach would not change the shape of a CCH but
would affect the magnitudes of estimated correlations, the included
zeros reducing the average ¢ considerably (see Fig. 5C). If zero
segments were kept in the analysis, the averages would favor higher
firing rates over lower ones and a direct comparison between scaled
correlograms would become similar to a comparison of the absolute
counts of coincident events between classical CCHs. Such correlations
would largely reflect the relative duration of the periods of activity and
non-activity for the given neurons, which is not interesting for most
analyses. Hence, with the exception of Fig. 5C, all of the analyses
presented here were made by removing from the averages the
segments that lacked spikes, and this is how we define SCA for binary
signals.

By using simulations similar to those shown in Figs 3 and 4, we
investigated systematically the following four factors: (i) the segment
size, s, (ii) the ratio between the amplitudes of the probability
functions in Fig. SA of the slow and fast components (which is a
counterpart of the amplitude in continuous signals), (iii) the ratio of
the oscillation frequencies of the two components, and (iv) the
combined firing rate of the two spike trains.

Single component. With a non-homogeneous Poisson spike process,
the correlation values are expected to be much lower than those
obtained with continuous signals (Macke et al., 2009). This is due to
the nature of spiking signals, where a very small bin size (e.g. 1 ms)
makes the probability of observing coincidences modulated by the
signal of interest (e.g. the 60 Hz probability function) small, inducing
a correlation smaller than the normalized co-variance of continuous
signals. The positive contributions by spikes (i.e. entry b in Table B1
in Appendix B) require the events in both spike trains to occur in the
same bin, the likelihood of which event is << 1.0 even if the firing
probability functions in Fig. SA are correlated perfectly. Thus, the
count of negative contributions (entries ¢ and d in Table Bl in
Appendix B) is likely to be non-zero.

We investigated the relationship between the segment size and
measured strength of correlation by simulations for two different
oscillation frequencies of a single oscillatory component (50 and
10 Hz). For each component, we used two levels of correlation
strength (color coded). As found for continuous signals, the correla-
tions in binary signals were also estimated accurately only if the
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correlations considerably.

segment sizes were equal to or larger than the period of the oscillatory
rhythm (Fig. 6A and B). As expected, the correlations reduced when
the size of the segment reduced to a sufficient degree.

There was one difference to the results with continuous signals.
When the firing rates were relatively low (£ ~20 spikes/s), i.e. in the
range of cortical single units, and the segment sizes were small
(< ~40 ms), i.e. corresponding to the periods of gamma and beta
oscillations, the measured correlation values did not necessarily
decrease with the reduction in segment size but sometimes exhibited
an increase (Fig. 6A, green and red traces). The reason for that
increase in correlation strength lies in the nature of modulated high-
frequency signals, i.e. as the small segment sizes increase the number
of segments not included in the analysis, they also increase the number
of spikes disposed from the analysis. Notably, this disposal is selective
for spikes that provide negative contributions to the computed
correlation (entries a and d in Table B1 in Appendix B), as illustrated
in Fig. 5B and, consequently, the number of positive contributions
(entries b and c) relatively increases — leading to higher correlations. In

other words, in terms of a reduction of sample variability, SCA
achieves variance reduction by removing spikes that do not have
matches in the counterpart spike trains — the variance of any binary
signal being a direct function of the number of the events, i.e. var = P
(1 = P), where P indicates a probability to encounter an event and is
given by ¢/n, where c is the number of events in a binary series of the
length n.

Two components. In spiking signals it is not possible to create two
binary signals, each with its own coefficient of correlation and then
sum them up to produce a composite signal that would maintain both
correlations, each at a different time scale. This is because, in spikes,
all components (slow and fast) are represented by binary events, only
the underlying probability functions being continuous. As a conse-
quence, an analysis made for continuous signals in Fig. 3C-E cannot
be defined for binary signals. Rather, we focused the analyses on the
shapes of CCH (as in Fig. 4), as the shapes reflect the statistical
properties of the underlying probability functions. In Fig. 6C-E we
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show an example of a change in the shape of CCH depending on the
choice of the scale of analysis. The original CCH for a combination
of 10 and 50 Hz signals of equal amplitude (combined firing
rate = 40 spikes/s) indicates the presence of both components
(Fig. 6C) and so does SCA with large scale, which reveals the
identical shape (Fig. 6D). Importantly, SCA computed with short
segments (s = 21 ms) removes the slow, revealing the fast component
(Fig. 6E), much like the analysis of continuous signals (e.g. Fig. 4A).
Also, the analysis of the magnitude of the FFT of the correlogram on
these two scaled correlograms indicates an increase in the relative
magnitude of the fast component and concomitant reduction in the
magnitude of the slow component (black vs. gray trace in Fig. 6F),
much as was the case for continuous signals (Fig. 4B).

For binary signals, the distributions of individual r-values are
bimodal (Fig. 6G and H), with the cutting point at r = 0. With low
firing rates, a segment is likely not to contain a single coincident event,
in which case the correlation of the segment will have a small negative
value. In the case that a segment contains a coincidence, the
correlation will be most likely to be positive, and it may cover any
value between 0 and 1.0, including the perfect correlation of r = 1.0
(when this coincidence is the only event within the segment).

We made a detailed analysis of the effects of scale size on the shape
of the correlograms by using the same method based on FFT as
reported for continuous signals. We plotted the amplitude ratio
between probability functions of slow and fast components (Fig. SA)
against the square root of the magnitude ratio in FFT and systemat-
ically manipulated the firing rates of units (11 and 50 Hz; s = 21 ms;
Fig. 6I), the segment size (firing rate = 40 spikes/s; Fig. 6J), and the
frequency of the slow component (firing rate = 40 spikes/s; Fig. 6K).
Again, the relationships between the two ratios stayed linear for all
parameter values. Moreover, the results of the analysis were fully
independent when the firing rates were changed (rates were changed
by an equal factor for the slow and fast components; Fig. 6I). Much as
for the continuous signals, the slope of the linear relationship for
binary signals approached 1.0 as the scale approached the period of
the slow component (Fig. 6J), and as the frequency of the slow
component approached that of the fast component (Fig. 6K). The
results indicate that, when the shape of the CCH is of concern, SCA
removes slow components from binary signals in much the same way
as from continuous signals.

Combinations of continuous and binary signals

The SCA can also be applied to analyses that correlate a binary signal
with a continuous signal (e.g. LFP correlated to spiking activity) — also
known as a spike-triggered average (Gray & Singer, 1989). When
Pearson’s r is computed with such combined signals, it is called
the point-biserial coefficient of correlation and is described in
Appendix B.

The results obtained in the analyses of those combined signals were
very similar to and fully consistent with those obtained for continuous
and binary signals separately. In Fig. 6L and M we show examples of
the classical CCH and scaled CCH made with long (s = 101 ms) and
short (s = 21 ms) scales. The size of the scale has the same effect as
shown previously in Figs 4A and 6C-E for continuous and binary
signals, respectively. For the sake of brevity, other analysis results are
not shown.

Applying scaled correlation analysis to neurophysiological data

In Fig. 7A-J we show examples of CCHs computed from neuronal
spiking activity recorded from the cat visual cortex under anesthesia

Scaled correlation analysis 11

and in response to visual stimulation (see Materials and methods for
details). These examples compare the use of SPs with the use of SCA.
In Fig. 7A, an example of a CCH is shown with a flat SP (i.e. no rate
co-variation), and consequently the shape of the correlogram obtained
with SCA (Fig. 7F) was very similar in many details to the classical
one, also when the SP is subtracted (CCH — SP). Moreover, the
detailed structures of the CCHs, i.e. the relative sizes of the
neighboring bins, remained largely preserved across all of the plots.
This illustrates that, without rate co-variation, SCA produces the same
shape of a CCH as the classical approaches — including all of the
details on the bin-by-bin basis [see Appendix F for the estimation of
significance of averaged correlation coefficients in SCA based on the
method of fixed effects by Hedges & Olkin (1985)].

In Fig. 7B we show an example of a CCH that consists only of slow
components. The graph indicates slow rate co-variation without a
narrow center peak. The SP was not fully successful in removing these
slow components, suggesting that the slow rate co-variation was not
time-locked perfectly to the stimulus onset — a problem that the SP
cannot resolve. In contrast, SCA with s = 40 ms removed this rate
co-variation much more efficiently, as indicated by a near-flat
CCH (Fig. 7G). Also, as shown in Fig. 7C, SCA can remove rate
co-variation even when the SP is completely flat and, thus, when rate
co-variation is fully independent of the timing of the stimulus. In this
case, the classical CCH exhibits a wide peak and the SP is
nevertheless flat. With s = 40 ms, SCA removed this broad peak
almost entirely (Fig. 7H), which should be contrasted to the failure to
do so by a subtraction of the SP from the classical CCH.

In Fig. 7D and E, we show two example CCHs for the same pair of
units but in response to different stimuli (grating and plaid stimuli,
respectively, see Materials and methods). Here, an estimate of the
change in the strength of synchrony is hindered by the slow rate
co-variation in the original CCHs. SPs also do not help much. Only
SCA is helpful because — as judged by the shape of CCHs — it removes
the slow components much more efficiently than does the SP (Fig. 71
and J). In addition, Fig. 7D illustrates a real-world example in which
SCA can lead to a switch in the sign of correlation; the troughs of the
oscillation that are positioned at half the period of the oscillation cycle
indicate negative correlations detectable only when SCA is applied
(e.g. Fig. 7I). This is not always achieved by subtraction of the SP as
troughs remain positioned above the baseline of the CCH, which
is another indicator that SPs do not account fully for the rate
co-variation.

To illustrate further the versatility of scaled correlation in practice
with spiking data, four examples of CCHs with unusual shapes and the
corresponding SCA (s = 30 ms in all cases) are shown in Fig. 7K-N.
Irrespective of the shape, scaled correlation removes the slow
components and retains the fast components.

These results indicate that the conclusions obtained from simula-
tions also apply to real data; if a classical CCH indicates large rate
co-variation, SCA will remove these slow components but will retain
detailed information about the fast components.

Multi-scale analysis

Further analysis of the non-stimulus-locked rate co-variation in
Fig. 7C revealed that the underlying source is an oscillatory rhythm
in the theta range, which is shown in detail in Fig. 8A. The theta
component is visible when the cross-correlation window is expanded
to = 1000 ms. The resulting plots show an oscillatory rhythm of
~5 Hz. Interestingly, this is not the only source of slow activity in this
CCH. Theta activity is superimposed on top of yet another slow
component that had a time period of > 1 s. The SP captured this
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FIG. 7. Example application of scaled correlation to spiking signals recorded from the cat visual cortex. (A-E) CCH, SP and the difference between the two
(CCH - SP) shown for five example pairs of multi-unit activity recorded from the cat visual cortex. (A) An example of precise neuronal synchrony (large center

peak) supported by strong oscillatory activity in the beta range (large satellite pe

aks at ~35 ms phase shift). (B) Example CCH that does not indicate neuronal

synchronization but only slow rate co-variation as indicated by the wide center peak and the elevated SP. This result is typically obtained when CCH is computed

between spike trains that include strong transient changes in rate responses due to,

e.g. an abrupt onset of the stimulus (the so-called ON-responses). (C) Example

CCH in which the center peak contains both a narrow component indicating neuronal synchrony and a much slower wide component. In this example, the slow
component is not time-locked to the stimulus, as indicated by a flat SP. (D and E) The CCHs are computed for the same pair of units but in response to two different
stimuli, illustrating the difficulty in determining how synchronization strength changes as a function of stimulus properties. (F-J) Application of SCA to the CCHs
shown in A-E by using the scale s = 40 ms, which is suitable for extraction of signals supported by an oscillation frequency of 25 Hz or higher. (K-N) Further

examples of CCHs of unusual shapes illustrating that SCA maintains the detailed

slowest component well, the oscillatory pattern in the theta range
being revealed accurately after its subtraction from the original CCH
(CCH - SP, Fig. 8A). This indicates that this slow component is
locked to the stimulus. As would be expected, SCA revealed the same
oscillatory pattern when computed with the same cross-correlation

structure of the correlogram at fast time scales. In all cases s = 30 ms.

window (£ 1000 ms) and with an appropriate scale (s =200 ms)
(Fig. 8A, SCA). Again, SCA and CCH - SP match in much of the
detailed relative relations between the neighboring bins, indicating that
SCA is an accurate method for removing the slow components from
CCHs.
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Fi1G. 8. Example of a multi-scale analysis and application of SCA to real continuous signals. (A) A raw CCH, SP, their difference and SCA computed for the same
data as in Fig. 7C except that the cross-correlation window is +1000 ms and the scale s = 200 ms. (B-D) SCA computed on signals other than pairs of spike trains.
(B) SCA for continuous data obtained by recording LFPs computed with large (s = 1000 ms; blue) and small (s = 30 ms; red) scale. (C) The same as in B but
calculated on an electroencephalogram. In this case an auto-correlation histogram is computed. (D) Scaled correlation computed for one continuous (LFP) and one
binary signal. (E) The distribution of r-values of the scaled correlogram in D (s = 30 ms). (F) Intensity plot of sliding window analysis with different scales. SCA for
a pair of LFP signals over a ~6.5 s period computed either with s = 30 ms (upper graph) or s = 400 ms (lower graph) with sliding windows of a size equal to the
scale (i.e. 30 or 400 ms) that were slid in steps of 20 ms. The stimulus was presented at 1000 ms and was removed at 5000 ms. For interpretation of color references

in figure legend, please refer to the Web version of this article.

Local-field potentials and electroencephalogram signals

Example applications of SCA to continuous signals are shown for
LFPs (Fig. 8B, CCH) and electroencephalogram signals (Fig. 8C,
auto-correlation histogram). Similar to the application on spiking
activity, the correlations between slow components of continuous
signals are removed efficiently and the dynamics of fast components is
revealed when small scales are chosen.

In Fig. 8D we show example spike-field correlograms with SCA
computed at two different scales. Here, for small values of s, stronger
correlations are detected than for large values of s, indicating that the
slow components attenuated the correlations produced by the fast
components. The distribution of r-values is shown in Fig. 8E.

Sliding window analysis is also a popular type of application of
CCH to data analysis where the calculations are made over small
consecutive time windows and it reveals in this way how synchro-
nization and/or oscillations evolve over time (e.g. along an experi-
mental trial) (e.g. Roelfsema et al., 1997). Sliding window analysis
can also be performed with SCA and an example for a pair of LFP

signals is shown in Fig. 8F. Here a window of size equal to the scale
was slid in steps of 20 ms. For each window, scaled correlation CCH
was computed and plotted as an intensity plot. When sliding window
analysis is performed with a small scale (s = 30 ms, top), many details
of the underlying dynamics can be recovered in the plot. These details
are hidden in the plots computed with a large scale (s = 400 ms,
bottom) or with a classical CCH (not shown).

Comparison to spectral methods

Spectral techniques are widely used to study different frequency
components of neurophysiologic signals (Jarvis & Mitra, 2001;
Pesaran et al., 2002) and have also been used to address issues similar
to those for which SCA has been designed. Thus, it is important to
know how SCA compares with analyses based on various spectral
techniques. We first investigated the degree to which spectral
techniques can be used as an alternative to SCA for removing the
slow components from a CCH. Next, we compared the performance of
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coherence techniques as measures of synchronization with those based
on cross-correlation computed with scaled correlation.

Removing slow components from a cross-correlation histogram by
filtering

One potential approach for removing slow components from pairs
of signals comes from the Wiener—Khinchin theorem, from which it
follows that the CCH is the inverse Fourier transform of the cross-
spectrum (Blackman & Tuckey, 1958). The cross-spectrum can be
computed by multiplying the Fourier spectrum of the first signal
with the complex conjugate of the Fourier spectrum of the second
signal (Jenkins & Watts, 1968). Thus, for a CCH between binary
signals x and y, one may attempt to remove the slow components
from the CCH by first computing the Fourier spectra of the two
signals (S, and S,), next computing the cross-spectrum between the
two signals (S,,), and then by filtering the cross-spectrum (by
setting the low-frequency components to zero). Finally, the ‘filtered’
CCH is computed as the inverse FFT of the ‘filtered’ cross-
spectrum. See Fig. 9A for the computational steps required for such
a calculation.

To obtain a smooth estimate of the frequency spectra, it is necessary
to apply windowing techniques (Jenkins & Watts, 1968). We first
considered the windowing method based on multi-tapers because such
methods have been already used with spiking signals (Jarvis & Mitra,
2001; Pesaran ez al., 2002). With multi-tapers, the original signals are
multiplied with a set of orthogonal tapering functions (e.g. Slepian
sequences), the Fourier transforms of the resulting product signals are
computed for each taper separately, and finally the spectral compo-
nents are averaged across all of the tapers (Percival & Walden, 1993).
To exemplify this, we first reconstructed the CCH in Fig. 9B
(replotted from Fig. 7E) by using three Slepian tapers. The shape of
the resulting CCH (Fig. 9C) only resembled the original but much of
the structure was changed and the detailed structure was absent even

in this non-filtered CCH. Thus, tapers produce spurious components
and hence could not be expected to yield reliable results when filtering
is applied.

Another, simpler, spectral smoothing method, the Barlett method
(Djuri¢ & Kay, 1999), produced better results. Here, the signals are
windowed with a rectangular function and hence spurious components
are not added to the reconstructed CCH. The reconstructed example
CCH is shown in Fig. 9D. Therefore, we attempted to remove slow
components from CCHs reconstructed by using Barlett’s windowing
method and by setting the low-frequency bins (< 25 Hz, correspond-
ing to s = 40 ms) of the cross-spectrum to zero. This filtering did not
work to a satisfactory degree. For example, when the CCH in Fig. 9B
was ‘filtered” by this method, the resulting CCH still contained large
slow components, and fast components also seemed to be attenuated
(Fig. 9E). In contrast, scaled correlation with s = 40 ms removed the
slow component efficiently (Fig. 9F).

Scaled correlation and coherence

In the frequency domain, an equivalent of correlation is coherence
(Jenkins & Watts, 1968). Coherence measures the periodic correlation
between signals, and has been suggested as an alternative to
correlation analysis (Pesaran ef al., 2002; Sandberg & Hansson,
2006). We investigated how this method relates to scaled correlation,
in particular when it is applied to non-periodic signals. As an example,
we show a CCH with a narrow center peak but with little or no
oscillatory activity (Fig. 9G), suggesting that the signals, although
synchronized, do not exhibit prominent periodicity. This is confirmed
by the coherence analysis computed by using the multi-tapers (Zeitler
et al., 2006; again, by using three Slepian tapers). Spectra were
estimated with non-overlapping sliding windows of 512 ms. Coher-
ence showed no dominant frequency (Fig. 9H) and a noisy phase
relationship between signals (Fig. 91). Therefore, there was no peak
frequency at which correlation between signals could be measured. In
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contrast, SCA, which does not rely on periodicity, in this case showed
a clear center peak (Fig. 9J).

We next investigated whether in these cases SCA correlated to the
average coherence computed over the whole frequency range between 0
and 500 Hz (the sampling frequency was 1 kHz). To this end, we
computed the correlation between the size of the peak of SCA and
coherence averaged across all bands for 36 pairs (resulting from nine
multi-units), the responses of which to 14 stimulation conditions (504
data points in total) were recorded simultaneously and did not exhibit
periodic activity, as assessed from auto-correlation functions (average
oscillation score in the 20-40 Hz band = 2.37, see Muresan et al.,
2008). The scale, s, was set equal to the trial length. The correlation was
positive (r = 0.59; see Fig. 9K). As would be expected, this correlation
was much smaller with strong periodic activity in neuronal responses. In
another data set, recorded from the same multi-units and stimuli but at a
later time, neurons exhibited oscillatory responses in the beta-high band
(oscillation frequency = ~27 Hz; average oscillation score in the 20—
40 Hz band = 6.81). In this case, the correlation between the averaged
coherence and SCA peak was low (r = 0.28) but the coherence at the
oscillation frequency of 27 Hz correlated much better with SCA
(r = 0.57) (results not shown). Therefore, coherence measures produce
results that are similar to those obtained by SCA provided that there is
good periodicity structure in the data. However, when periodicity is
missing, another type of measure extracted from coherence results may
be more optimal to describe the signals. In contrast, SCA does not rely
on the assumptions of periodicity and, hence, its results are independent
of the presence of this property in the data.

Discussion

In the present study we proposed a measure of neuronal synchrony
based on the reduction of the sampled signal variances. The method
enables the segregation of correlations at different time scales (e.g.
frequency ranges). By basing the analysis on a fast (short) time scale,
the contributions of correlations with slower time scales are strongly
attenuated in the resulting CCH or auto-correlation histogram. This
has the effect that unwanted (slow) rate co-variations are removed
from the CCH. SCA can be applied to binary signals, continuous
signals, and combinations of continuous and binary signals to remove
the contributions of slow components and to extract precise neuronal
synchronization between these signals. SCA is more efficient at
removing slow components than the SP as it can be applied even when
SPs are flat, i.e. when rate co-variation is not stimulus-locked.

The attenuations made by scaled correlation are not always perfect.
The effects of the method are limited when the difference between the
time scales is small and, in the same time, the signals that need to be
attenuated have much larger amplitudes than the signals of interest.
Nevertheless, as the simulations show, SCA attenuates slow signals
well for a wide range of parameters and, as our experience indicated, it
performs very well on neurophysiological data.

An advantage of using Pearson’s coefficient of correlation is that its
mathematical and statistical properties have been studied in much
detail. The procedures for averaging multiple r-values have been
investigated (Fisher, 1915; Corey et al., 1998; Hunter & Schmidt,
1990; Field, 2001; Raju & Brand, 2003; Millsap, 1988, 1989) and the
tables and algorithms for testing the statistical significance of r are
available. We have also proposed a correction for multiple compar-
isons that is suitable for application to CCHs based on the requirement
that three neighboring peaks are significant (Appendix F).

The calculation of SCA is fast and, to assist its easy implemen-
tation, we provide, as a free download, open-source, speed-optimized
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routines and compiled libraries (see Appendix B for details and links).
Most of the demonstrations and tests provided in the present study
were based on the extraction of correlations on fast time scales (e.g.
< 50 ms), in the range of beta/gamma oscillations. However, the
same principles apply for examining signals at any other time scales
(e.g. preserving those in the range of theta oscillations), as the time
scale of interest can be freely chosen. Also, the application of SCA is
not limited to neuronal activity but the same tools can be applied to
any type of signals if it is of interest to segregate the contributions of
fast and slow components to cross-correlation or auto-correlation
functions. Thus, the relevant scale may depend in each analysis on the
research question at hand and may thus be decided a priori by the
researcher. Alternatively, the scale of interest may be chosen after an
initial inspection of the data by applying the classical CCHs, or a
frequency analysis (e.g. Fourier spectrum). Scaled correlation may
prove particularly useful for extracting small time delays in neuronal
spiking activity. These delays are typically extracted from CCHs and
require the analysis to focus on beta and gamma oscillations (Konig
et al., 1995; Schneider et al., 2006; Nikoli¢, 2007; Havenith et al.,
2011).

Choosing between scaled correlation analysis and spectral
methods

One straightforward approach to removing slow components from
signals is to simply filter the input signals prior to the computation of
the cross-correlation. The limitation of this approach is that it is
applicable only to continuous signals because binary series (point
processes) cannot be filtered such that another binary signal is
obtained. In other words, for binary signals, filtering is not defined
because it should be restricted only to the removal or insertion of
binary events (spikes). Therefore, filtering cannot be used as a general
approach for removing slow components from CCHs. Scaled corre-
lation does not filter signals directly and, hence, SCA can be applied
equally efficiently to signals of any nature, i.e. binary or continuous.

To test an alternative to direct filtering on binary data, we relied on
the Wiener—Khinchin theorem (Blackman & Tuckey, 1958). We
computed the cross-spectrum of the two spike trains, set its low-
frequency bins to zero, and then inverse-Fourier transformed it to
obtain a “‘filtered”” CCH. We showed that, only without filtering, this
approach can reconstruct the original CCH fairly accurately and only
if certain windowing techniques (e.g. Bartlett) but not others are used.
For example, the reconstruction of a CCH from the cross-spectrum
estimated with multi-tapers has the problem that the reconstructed
CCH also contains components corresponding to the tapers. Thus, the
shape of the reconstructed CCH also does not correspond to the
original. Consequently, although useful for a number of analyses
(Pesaran et al., 2002), multi-taper methods cannot be used to
reconstruct a CCH and, hence, also cannot be used to remove slow
components from a CCH. Problems also exist with other spectral
methods because the spectral representation of binary and/or non-
periodic signals is spread across multiple frequency components of the
spectrum. Therefore, by filtering signals by setting the low-frequency
bins to zero (Jenkins & Watts, 1968), the representation of the slow
components is not eliminated completely.

We conclude that spectral filtering methods, although useful for a
number of analyses, cannot be used for the accurate removal of slow
components from CCHs. Particularly strong limitations are encoun-
tered when the correlated signals have representations spread across
multiple components of the frequency spectrum, as is the case with
trains of action potentials and/or with non-periodic signals. Therefore,
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for any analysis based on CCHs, scaled correlation is a more efficient
way to selectively extract the correlations between the fast compo-
nents of the signals.

Our results also showed that coherence could not be a replacement
for SCA (and vice versa) as the two measures are correlated only in
some cases and to a limited degree. The strength of correlation
depends on data properties and on the chosen features of the coherence
function. Thus, as described previously by Jenkins & Watts (1968),
correlation and coherence are not identical measures but provide
complementary information.

In general, the main property that distinguishes the present methods
from the spectral techniques is that scaled correlation does not assume
a periodic nature of the signals, being equally applicable to the
measurement of synchrony with and without oscillations. Conse-
quently, depending on the researcher’s preference and the scientific
problem at hand, SCA may be chosen over other techniques.

Fisher’s z-transformation

One commonly recommended procedure for averaging the values of
r is to make a Fisher z-transformation of r-values prior to their
averaging, and then transform the average back into an r-value
(Fisher, 1915). This procedure is designed to reduce the skew in r-
distributions that occurs with larger values of r and to thereby reduce
the bias towards underestimating the average of such skewed
distributions. However, there are different opinions among research-
ers about whether or not such a transform is beneficial to the analysis
(Silver & Dunlap, 1987; Corey et al., 1998; Hunter & Schmidt,
1990; Field, 2001). Fisher’s z-transformation is an option when
computing SCA with continuous signals (the equations are provided
in Appendix A) but should not be used with spike signals for the
following reasons. As we have shown, the distribution of ’s has a
large number of small (negative) values (see Appendix E). These
small values do not suffer from the problem of skewed distributions.
More importantly, the distribution is also very likely to contain
values with r = 1.0, which occur when, within the segment, the two
units fire one or more pairs of spikes in perfect coincidence. Fisher’s
z-transformation cannot be added to the sum with r=1.0 as it
produces +oo.

In conclusion, in the measurements of precise neuronal synchrony,
the issue of contaminating slow rate co-variation does not need to be a
problem. With the application of SCA, slow rate co-variation can be
efficiently separated from precise synchrony and the false detection of
synchrony can be prevented. For these reasons, SCA may serve as a
versatile tool for the investigation of correlations across a variety of
neurophysiological signals.
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Appendix A: Fisher's z-transformation of r-values

To average the values of r by using Fisher’s z-transformation, each r is
first converted into a Fisher’s z, denoted as z’ (Fisher, 1915), by
computing the inverse hyperbolic tangent

2 = arctanh(r) = 1/2[In(1 +7) — In(1 — )] (41)

where In is a logarithm with natural base e. Note that if r =1 or
r=—1, 7 cannot be computed. After the transform, the values of 7’
can be averaged and the result, Z, can be converted back to r by
computing the hyperbolic tangent

r. = tanh(7) = (eﬁ’ - 1)/(.32? + 1) (42)

Note that Fisher’s z-transformation is not the same as the standard
z-score although both traditionally use the same symbol (z) to
indicate the respective values.

Appendix B: calculating Pearson’s coefficients of
correlation for different types of signals

Pearson’s r between variables x and y is defined theoretically as the
product moment correlation, which for a sample is computed as
follows

. 22,2y
N -1
where N indicates the number of measurements and z is the standard

score (z-score) for each measurement (not a Fisher’s transform). Thus,
Pearson’s r is a measure of correlation normalized to a unit variance,

(B1)
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and its square () can be interpreted as the proportion of variance
explained in one variable by knowing the value in another variable.
Other formulas are used for the computationally efficient calculation
of r.

Continuous signals

For pairs of continuous signals, such as LFP or electroencephalogram,
the following equation can be used to compute » quickly

. N — (S0 )

VNE 2~ (SN - (S0

where x and y are the raw measurements of electric potentials for the
two variables and N is the number of measurements used to compute .
For example, if the scale s = 50 ms and the sampling rate of the
continuous signal is 1 kHz (i.e. 1 measurement/ms), there will be a
total of N = 50 measurements for each r. Thus, prior to applying the
equation, one needs to make one run through the data set (e.g. one
‘for’ loop) and compute five sums: Zx, Xy, Zx%, Ty* and Zxy. If the
measurements are given as integers, the calculation will be faster if:
(i) these sums are also computed with integer arithmetic (type ‘long’
should be used) and (ii) floating point operations are then used only
for the final calculation of Eqn B2. In MATLAB, function ‘corr(X)’
can be used to compute Pearson’s coefficient of correlation.

Binary signals

For binary signals, such as the time stamps of action potentials
(spikes), the version of Pearson’s r known as the phi (¢) coefficient of
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correlation (Kuo, 1930) should be used. The phi coefficient of
correlation is mathematically equivalent to Pearson’s r but the
calculation is optimized for the use of dichotomous and nominal
variables. The calculation assumes that data are organized into time bins,
each bin having a short duration (e.g. 1 ms) and containing either a 0 or
1, indicating the absence or presence of an event, respectively (e.g. an
action potential). For larger time bins (e.g. 5 ms), multiple action
potential events can occur within a single bin, in which case only one of
them can be counted (i.e. the values cannot exceed 1). The calculation of
¢ begins with a count of coincident spikes, b, coincident lack of spikes,
¢, bins with spikes only in one variable, a, and only in the other variable,
d, which can be shown as a contingency table (Table B1).

TasLE B1. Contingency table for the computation of the ¢ coefficient
of correlation between two binary variables X and Y

Y/X 0 1 Totals
1 a b a+b
0 c d c+d
Totals a+c b+d N

A value of 1 indicates the presence of at least one event (e.g. action
potential) in a given bin (e.g. 1 ms size) and a 0 indicates the absence
of the event. The count of coincident events is given by value b,
whereas ¢ represents the number of time bins in which no events
occurred in either of the two signals, and a and d give the counts of
events that did not have a coincident counterpart in the other
respective signal. The coefficient ¢ is computed by entering the values
a — d into Eqn B3.

After the frequencies a — d are determined, ¢ is computed by the
following formula

(bc — ad)
Via+b)c+rd)ateo)b+d)

b= (B3)

Here we provide an example of the calculation of the ¢ coefficient
of correlation for a short segment of data with ten bins and two spikes
in each signal. In this example, only one coincident event occurred
(shown in Fig. B1).

Fig. B1. Two example spike trains with two action potentials each. r
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indicates Pearson’s coefficient of correlation computed with Eqn B2.
The bins counted for values a, b and d are indicated by arrows. All other
bins count for the value of c.

The counts in the contingency Table B1 are as follows

Y/X 0 1 Totals
1 1 1 2

0 7 1 8
Totals 8 2 10

By using Eqn B3, this leads to the following calculation of the phi
coefficient of correlation

7-1 6

¢= T /256

= 0.375.
V2-8-2-8

Combination of continuous and binary signals

Finally, for correlation between one continuous variable, x, and one
binary variable, a form of Pearson’s r known as the point-biserial
coefficient of correlation should be used. This coefficient is computed
most efficiently by the following equation

(Xl *Xo) P(l *P)
Sy

r'pg = 5 (B4)

where x; and x, indicate the averages for the continuous variable in
cases where the binary variable had the values 1 and O, respectively, P
is the probability that a value of 1 will be observed in the binary
variable, and S, represents the population standard deviation for the
continuous variable. Note that

P(1 — P) = (myno) /n*, (B5)

where n; and ny indicate sample sizes (counts) for x; and xo,
respectively, such that n = n; + ng. This equation can be used to
correlate continuous signals such as LFP or electroencephalogram to
neuronal spiking activity. Note also that, when computed for all
possible time offsets between target and reference, x; can be
interpreted as the spike-triggered average of LFP (or electroenceph-
alogram) and rpp as the normalized spike-triggered average.

Spearman’s rho

In cases in which the applicability of Pearson’s r, which is a
parametric method, is doubted, one possibility is to compute the non-
parametric Spearman’s rtho (p) coefficient of correlation. This
measure of correlation is a Pearson’s r computed on ranked data
instead of the original data. Thus, if data are first ranked with values
1...N, where N is the number of data points, and if for each pair a
difference in ranks, D, is computed, then Spearman’s rho is given by

p=1- (B6)

N3—N’

The routines for the computation of SCA are freely available as a
source code in C++, a dynamic-link library for Windows or a
dynamic-link library specialized only for the Matlab environment (but
also only for the Windows operating system). The package is
downloadable from http://www.raulmuresan.ro/sources/corrlib/ and
also contains the routines for the calculation of classical CCHs
together with instructions on how to use the routines.

Appendix C: variance across the entire data set

Claim

If the segments are equal in length, the variance of the entire data set is
larger than or equal to the arithmetic mean of the variances of the
segments: Varg = Varg.

Proof

For any random variable x, the mean is the value around which the
second moment of x is minimal (Kim, 1992; p. 224)
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%Z (x; — u)*= min. (c1)

For K segments, each with L samples (bins), the variance of the
entire data set is

| KoL
Varg = HZ Z (o — )7, (C2)

k=1 I=1

and that of a segment £ is

1L
Varg = ZZ (ks — uk)z, (C3)
=1

where [i indicates the arithmetic mean of the entire signal and g,
indicates the mean of the k’th segment. ji will, by definition, be

different to the means of the individual segments, k, i.e. [t #
L
Therefore, it follows from Eqn C1 that the summands in Y in
k=1
Eqn C2 will always be larger when computed with the mean of the
entire signal, i.e.

> = )*>) (o — ),

=1 =1

leading to Varg > Varg.

Appendix D: scaled correlation and filtering of correlations

Consider two time series X and Y, defined as follows

and
Y=Y +Y+7Y, (D2)

where X; represents a time series that is slowly oscillating in amplitude
(slow component), Xy is a time series that oscillates much faster than
X, (fast component), X, is the noise, X, Xy and X,, are assumed to be
mutually independent and Y, is similarly defined as the summation of
the three independent components Y, Yrand Y,,. Also, in line with the
conventions for computing cross-correlograms and given that we are
interested primarily in time-averaged results, all of these time series
are assumed to be homogeneous.
The cross-correlation between X and Y is by definition

E(XY

~

=E((X + Xy +X,) (Y + Yr + 12))
=E(X, Y+ XY+ XY, + X Yo+ X Y+ X, Y+ X, Yy
X Yo+ X5 Yy), (D3)

where E denotes the expected value.

The goal is to isolate the cross-correlation of the fast component, i.e.
EX/X)).

Using Eqn D3, it can be written

E(XyYy) = E(XY) — E(X.Y + X, Yy + XY, + X/ Y,
+X/ Y, + X, Y, + X, Y + X, Y,). (D4)

Assuming that the noisy processes X,, and Y, have a mean of zero,
Eqn D4 can be simplified into
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E(X;Yy) =E(XY) — E(X, Y, + X, Yy + X/ Y5)
=E(XY) — (E(X.Y,) + E(X,)E(Yy) + E(X/)E(Y,)).  (D5)

For the cases in which E(X;) and E(Y;) are of a moderate magnitude
and E(Xp << 1 and E(Yy << 1, the magnitude of the negative term in
Egn D5 is determined mainly by E(X(Xp, which is the cross-
correlation between the slow processes X, and Y.

It follows that the center bin of the classical cross-correlogram of
the fast component is estimated as

E(X;Yy) = E(XY) = X(X,Y;) — e, (D6)

where ¢ is zero if X; is independent of Yy X;is independent of Y;, and
the means of X and Yy are 0.

Implicitly, scaled correlation estimates and subtracts a normalized
form of the term E(X;Yy from Eqn D6, which can be shown in the
following way.

We first show that scaled correlation can be expressed in terms of a
subtraction of the expected product between the means of the
segments, E(u i), from the classical cross-correlation.

Equation 8 from the main text can be linked to the average of
correlation coefficients if the following is considered

K T Oxk O yk

75 :%Zrk _ 1§l — )Y = E(4))]

%ZE(XI{YI() — E(X3)E(Y;)

T OxicOyk ’
where X; represents the time series of the k-th segment (ranging
between 1 and K).

Next, assuming that X and Y have the same variance across all
segments, it follows that

e B K) — BB
x0y T
~ o (EO) - () (o7)

where iy is the mean of segments of X.

Equation D7 states that, by calculating correlations on short
segments for time series X and Y, scaled correlation in effect also
computes the expected values for the product between iy and py, i.e.
E(p, 1y). The averages pix and py are computed for each consecutive
segment, and have n = N/K sampling points (a positive integer;
s = n*bin size), N being the total length of X and Y in sampling points
(t = N*bin size), and K being the number of segments.

We next show that the subtraction of E(yi, ) is an approximation
of the E(X,Y;), and a part of this approximation is a procedure that acts
as a moving average filter with low-pass properties.

Low-pass filtering is defined as a filter that passes low-frequency
signals and attenuates signals with high frequencies, which can be
achieved by calculating a moving average. For each data point, the
moving average is computed by averaging the values of several
neighboring data points, which is called the window of moving
average, the size of which is given by the total number of averaged
data points, d. Typically, the moving average is computed by sliding
the window by a step of one data point, resulting in overlaps between
subsequent window positions. In scaled correlation, due to the
segmentation, the overlap is not necessary. It is sufficient to compute
one average for each segment such that the length of the moving
window, d, corresponds to the segment size, s.
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To be precise, let us define X, and Y, as low-pass-filtered versions
of X and Y by applying moving averages. Thus, jx and uy are a sub-set
of X, and Y, sampled at a constant interval, d.

It follows that the expectation of the product of the low-pass-filtered
X and Y can be approximated, i.e. E(X.Y,) by the E(u, ).

The approximation error |E(u, pty) — E(X.Y.)| is reduced 1when the
segmentation length s reduces. Keep in mind that the length of this
window also determines the properties of the low-pass filtering. Thus,
the approximation error cannot be reduced without changing in the
same time the cut-off frequency of the signal components that will be
removed from the scaled correlation.

Finally, when s is equal to the total length of the signal, the term
E(p, py) in Eqn D7 corresponds to the magnitude of the baseline of a
normalized classical CCH, i.e. the product of the means of the X and Y.
Therefore, a scaled cross-correlogram with s = data length will have a
shape that is identical to that of the classical CCH, when the classical
one is centered around zero after being corrected for the baseline.

Appendix E: conditions under which the average
of segmented correlations equals non-segmented
correlation

Claim

If the means and variances of signals are constant across all segments, the
average scaled correlation obtained with small s is identical to the value
of the single correlation coefficient computed across the entire signal (i.e.
overall correlation determined with the maximum segment size, s).

Proof

Consider r computed across the entire pairs of signals x and y as the
product moment correlation for population

Xz,z,
TN
Note the division by N, rather than N — 1, which indicates the

correlation estimate for the population. The standard score, z, is
defined as

(E1)

X—p
O_ b

z =

where p and ¢ indicate the mean and SD, respectively. If the signals
are segmented and the mean and variance (i.e. ¢°) stay constant for
each variable across all segments, correlation 1 averaged from r; to rg
can be written as

L L L K L
[lex”Zy” + IZI ZXZIZ}'ZI +...t [lexklzym Z Z ZX/uZy,(,

Fe _k=li=1 . (E2)
KL KL

where indices 1...K represent different segments and L is the number
of measurements (bins) within a segment.

Following from the definition above, the value of the z-score does
not depend on the actual number of segments, when u and ¢ are
constant across segments. For the correlations computed across the
entire signal (Eqn E1), N = KL. Also, due to the consecutive
segmentation of the signals, the nested sums over L and K can be
expressed as a single sum over N. It follows that

N
Z anZyn
n=1

7= 7T =r. (E3)
This concludes the proof.

To illustrate the applicability of this proof on binary signals, we
give an example of two spike trains having in total N = 21 bins for
which the correlation ¢ = —0.028 (computed with Eqn B3). Each of
the three segments has seven bins and the spike counts are the same
across all segments, i.e. three and four spikes in all segments for the
variables X and Y, respectively (Fig. E1). Equal spike counts make
the means and variances equal across segments.

Fig. E1. Two hypothetical spike trains with different firing rates but
with the same number of action potentials within each of the three
segments. Segments are separated by the gray/white pattern. ¢-values
indicate correlation coefficients computed within each segment.

Correlations computed for each segment are different as they
depend on the number of coincident events (3, 2 and O in the present
example). Nevertheless, the average of these correlations,

¢ =(0.75 + 0.167 — 1.0)/3 = —0.028, is identical to that computed
for the entire stretch of data.

Implications for Fisher’s z-transformation

When Fisher’s z-values are computed for the summands, Eqn E2 no
longer applies and, thus, the identity Eqn E3 no longer holds.
Foremost, Fisher’s z-transformations cannot even be computed for the
above example due to ¢ = —1.0 for which the transformation cannot
be made. When the calculations were made for only the first two
segments in which the correlations were suitable for Fisher’s z-
transformation, the ‘corrected’ average was ¢ = 0.516. This value was
different from the single correlation coefficient computed across the
two segments, ¢ = 0.458. Therefore, Fisher’s z-transformation cannot
be used with binary signals.

Appendix F: estimating the significance of r-values

Sometimes it is necessary to estimate whether a correlation coefficient
obtained from SCA is significantly different from a zero correlation.
The significance of a phi coefficient of correlation, which is based solely
on binary signals, is usually determined by computing a chi-square test
(e.g. Runyon & Huber, 1980). The significance of a coefficient of
correlation that includes at least one continuous variable (hence
including the point-biserial coefficient of correlation) is based on the
Student’s #-distribution. The #-value can be computed from r as follows

t= , (F1)

and is distributed with N — 2 degrees of freedom. N indicates the
number of samples, which, in the case of spiking signals, corresponds
to the number of bins. For example, with a 1 kHz sampling rate of the
signal (1 ms bin), » = 0.50 is significant with N =12 and 22 at
o =0.05 and 0.01, respectively (z-values = 1.83 and 2.58, respec-
tively; one-tailed test). With a 1 ms bin size, this amounts to a duration
of segments of only 12 or 22 ms. Equation F1 should not be used for
N < 6 as the estimates become inaccurate. High accuracy may be
achieved with N = 60 (Millsap, 1988, 1989). For binary signals, the
correlations are typically much smaller and will require longer
stretches of signal to reach significance.
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Significance of average correlations

Due to the nature of scaled correlation, it is necessary to compute the
significance of an average of correlation coefficients rather than that of
a single coefficient. For testing the significance of 7, we propose the
method of fixed effects of Hedges & Olkin (1985) developed for
testing the significance of average correlation coefficients in meta-
studies. According to Hedges & Olkin (1985) (see also Field, 2001),
the SE of the average correlation coefficient can be estimated from the
number of estimates of r used to compute the average, which
corresponds to the number of segments, K, and from the sample size
for each r, which corresponds to the number of samples (bins) within
each segment, L. Hence, the SE is given by

SE(F) = ]ﬁ (F2)

The likelihood of obtaining the given 7 by chance is then obtained
simply from the following z-score

(F3)

For example, for K = 400 segments and for 25 samples in each
segment (e.g. s = 25 ms with a 1 kHz sampling rate; a total of 10 s of

signal), the SE is
SE(F) = L 001066
"=\ T000(22) T Y

which, even for a very small 7 = 0.05 leads to a z-score = 4.69 and a
highly significant value of P = 1.36 x 107°.

However, with spiking signals these significances will be smaller
because usually only a portion of segments contain spikes for both
neurons and, thus, only a portion of segments will be taken into
analysis. For example, with a firing rate of 10 spikes/s and with the
assumption of independence between the neurons, it is expected that
only 15 segments out of 40 (37.5%) will be valid. Equations F2 and
F3 lead to SE(7) = 0.0714 and, for the same 7 = 0.05, to P = 0.002
(z-score = 2.87).

Controlling for multiple comparisons

The next step is to control the type I error in statistical inference,
which is the problem of false-positive detection of significant
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correlations. When computing CCHs, this can lead to a considerable
problem due to the large number of estimates made across different
offsets in each CCH. For example, if two signals are not correlated,
and the significance is tested at o = 0.01 for m = 161 correlations
(£80 ms shift with 1 ms binning plus the center bin), it is expected
that in p(m) = 1 — (1 — o)™ = 0.80 or in 80% of cases at least one bin
will nevertheless be significant. Thus, without a correction, a
researcher is in danger of concluding incorrectly that, at some time
delay, the two variables are correlated.

A number of correction methods have been proposed for similar
problems with multiple comparisons in which one can, for example,
reduce the critical o value (see e.g. Toothaker, 1993). We propose
here a correction method that is suitable for the large number of
estimates made typically in a CCH and for the studies in which
correlation peaks of interest are wider than the binning resolution of
the CCH, as is usually the case. This correction procedure requires
that a peak is considered significant only if at least three
neighboring peaks are found to be significant by a standard, not
corrected, test.

This requirement that three neighboring, i.e. consecutive, bins are
significant controls well the probability of making a type I error in
statistical inference. For our example with nominal o = 0.01 for
m = 161 correlation bins, the probability that any combination of three
bins will be significant by chance already reduces from 80% to
p(m)*p(m — 1)*p(m — 2) = 0.51 or 51%. When it is required that the
three bins are neighbors, the conditional probability of corrected alpha
decreases to dcorr = p(m)*oc2 = 0.00008. With the nominal & = 0.05
this requirement leads to o,corr = 0.0025 and with the nominal o-value
relaxed further to 0.10, acorr = 0.01. Therefore, if three neighboring
bins are significant (and the correlations point to the same direction), we
can accept the significance of the peak confidently because the
likelihood of making a type I error is small.

Finally, it is important to note that it will not always be necessary to
compute the significance for individual CCHs. In many studies, the
significance tests are made by pooling a number of CCHs obtained
from different pairs of units and/or different subjects. Comparisons
are then made across, for example, different experimental conditions
(e.g. Biederlack et al., 2006). Here, the sample size is defined by the
number of pairs of units investigated, and the properties of such
correlation estimates (e.g. their distributions) usually allow for the
application of standard parametric statistics such as ANOVA. These
latter types of tests are also often more desirable as they allow the
researcher to generalize to the entire population rather than being
limited to a conclusion about a single pair of units, as is necessarily a
limitation of a significance test of an individual CCH.
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