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ABSTRACT

There is a problem of building artificial general intelligence (AGI) that can perform
various tasks that are today easy only for humans. An Al is needed that can replace
humans in many intellectual, perceptual, decisions making, problems solving and
creative processes. This Al would understand the surrounding world and is referred to
as strong-Al or artificial general intelligence (AGI). The present method for creating
strong-Al is based on a recent theory of organization of biological systems named
practopoiesis. The method provides cybernetic knowledge across three adaptive levels
of the agent: working knowledge, semantic knowledge, and machine genome. The
method follows closely the phylogenesis and ontogenesis of biological intelligence. The
present method allows very rapid phylo- and ontogenesis of machines as it combines
three accelerators, each offering at least a 1000x acceleration compared to biology. The
three accelerators interact recursively and form together Al-Kindergarten—a
development system that involves extensive play-like interactions with human trainers.
The method allows Al to asymptotically approach human intelligence and yet never fully
replace humans and still remain safe and under full control of its human creators.

FIELD OF THE INVENTION

The general field of invention is artificial intelligence (AI). More specifically, this
invention pertains to creation of artificial general intelligence (AGI). In particular, this
invention offers a method for providing artificial agents with knowledge necessary to
achieve human levels of intelligence.



BACKGROUND OF THE INVENTION

A problem of the current Al technologies is that they can do very well some things that
require effort for a human (e.g., calculating prime numbers, searching databases) but
have difficulties doing things that are for humans easy (e.g., perceiving, walking,
navigating through space). This problem may reflect an even deeper issue, and this is
the fact that neuroscience does not seem to have a satisfactory theory that would
explain how the biological brain achieves its functions in the first place.

For further developments of Al, we are in a need of using the principles of biology to a
higher degree than what we have been able to do so far. The present invention is based
on a new theoretical approach on how biology and brain work, resulting in a radically
new view on what the nature of mental and cognitive operations is. This new theory
consists of two theoretical steps. First, a set of general principles has been formulated by
which adaptive systems organize, the theory being named practopoiesis - which stands
for “creation of actions”. Second, based on practopoietic principles a theory of the
organization of brain and mind is proposed, named tri-traversal theory (Nikoli¢ 2015a;
Nikoli¢ 2014).

One of the fundamental implications of tri-traversal theory is that efficient cognitive
operations cannot be implemented solely by computational mechanisms i.e., by
manipulation of symbols. Rather, according to the theory, to make mental operations
intellectually powerful—meaning to achieve high levels of intelligence, creativity, and
flexibility—mental operations have to employ adaptive mechanisms besides the symbol
manipulations (Nikoli¢ 2015a). In other words, in a similar way in which a species
adapts to its environment throughout evolution and an organism adapts to its
environment throughout lifetime, the theory proposes that thinking occurs while the
state of the brain adapts to its environment from moment to moment, each adaptation
step resulting with a new content of a thought. The adaptation steps at the level of
thought are relatively fast, taking often less than a second. These adaptation steps are
what we experience as mental events. Thus, according to the tri-traversal theory, a
percept, a decision, attention directed or a new idea popping up in our minds, are all acts
of fast such adaptive processes. The difference between an adaptive process and the
classical approach to Al based on pure computation is that only the latter can be
executed in a closed box (e.g., inside a computer without any further inputs from the
outside; mathematically it is described as mapping from one set to another that occurs
entirely within the agent) while the former necessarily requires iterations with the
environment (each action executed needs feedback from the environment followed up
by a corrective action, followed by feedback, etc.; mathematical mapping can describe
the process only if the environment is also taken into account).

To create biological-like Al, the present invention presumes that it is necessary to mimic
biology in respect to the levels of organization at which a biological agent adapts to its
environment. However, it is not necessary to mimic any other details of biological
implementations. Each adaptive level can be simulated by a machine even if the machine
is starkly different from the biological implementation. There is no need to simulate
biological neurons or synapses in order to achieve the same type of intelligence as that
of human.



An agent created on the basis of tri-traversal theory needs to possess three separate sets
of mechanisms that execute adaptive operations; we can refer to them as policies
(Nikoli¢ 2015b). In that case, each policy is located at a different level of adaptive
organization with an important hierarchical organization: policies lower on the
hierarchy act on those higher on the hierarchy. Only the policy on the top of the
hierarchy directs its actions towards the outside of the agent (on the external world),
whereas all other policies operate internally, making changes to the agent itself i.e,, its
other policies. Only the policy at the bottom of the adaptive hierarchy is a fixed one, not
being changed during the lifetime of the agent.

The three types of policies are respectively referred to as: Working knowledge (at the
top), Semantic knowledge or Ideatheca (in the middle), and Machine genome (at the
bottom). The actions of Machine genome make changes to Ideatheca. Ideatheca
corresponds to what is in psychology known as long-term memory. The actions of
Ideatheca make changes to Working knowledge. Working knowledge corresponds to
what is in psychology known as short-term memory or working memory. Finally, the
actions of Working knowledge produce behavior of the agent. In Nikoli¢ (2015b) it has
been argued that such a hierarchy of policies can produce a much higher variety of
behavior than can an agent with a single policy for the same amount of total resources.

In practopoietic systems, each policy receives input from the environment and the
purpose of these inputs is to trigger actions and provide feedback on the success of
those actions. The consequence is that Ideatheca serves a function equivalent to a large
repository of learning rules being applied to adjust Working knowledge. Similarly
Machine genome provides a depository of learning rules on how to change Ideatheca. By
that token, Machine genome enables the agent to learn how to learn i.e., how to apply
Ideatheca to create new Working knowledge.

Given that there are in total three policies, we refer to this organization as tri-traversal
or for short Ts. As defined in Nikoli¢ (2015a), a traverse is a process by which general
cybernetic knowledge existing at a lower level of practopoietic hierarchy (e.g., at
Machine genome) gets instantiated in a more specific form at a higher level of the
hierarchy (e.g., at Ideatheca). Thus, a traverse is like a process of extracting specific
cybernetic knowledge from the environment by applying general cybernetic knowledge
stored at a lower level of organization (Nikoli¢ 2015a). This general-specific relation of
knowledge is closely related to the problem of inductive bias in machine learning
(Mitchell 1980), stating that the kind of knowledge that can be learned by an agent is
limited by the learning rules that the agent begins the learning process with.

Generality-specificity relation between different knowledge levels i.e., across policies at
different levels of the adaptive hierarchy, is an important feature enabling the Al to
create intelligent behavior. Much of the capability of an agent to behave intelligently
rests on having appropriate learning rules at the bottom of the adaptive hierarchy. If the
general knowledge of those low-level learning rules is not designed to extract a proper
specific knowledge for a given situation, there is no possibility for the agent to ever act
intelligently in that situation.



Advantages of Ts-organization

The advantage of a Ts-organization over Tz or T1 stems from the general advantages of
having additional adaptive levels. To produce intelligent behavior an agent needs
sufficient resources i.e., the bigger its brain, the more knowledge it can store and the
more intelligent it can possibly be. The amount of resources that are on the disposal of
an agent should match the demands that the environment poses—the more complex the
environment, the more resources are needed. This fact stems from the Ashby’s (1947)
requisite variety theorem: To be a successful regulator, an agent (i.e., agent’s brain) has
to be able to produce at least as much variety as the system that is being regulator (i.e.,
the environment in which the agent operates).

The problem is then how to store sufficient knowledge that generates sufficient amounts
of variety given a relatively limited storage size (e.g., a brain, computer memory)
compared to the vast variety that the real-life living conditions that may occur and may
need to be acted upon on planet earth. How can two-kilograms of brain tissue store
sufficient information to address the complexities of real human life? To answer that
question, one may begin by asking: How much total memory would be required to store
all the necessary knowledge needed to execute human-like intelligent behavior?

[t turns out that the answer to that question depends highly on the number of the levels
of organization within the agent. If the agent has only one policy and must store all of its
knowledge at that single level of organization, the increase in the demands on recourse
(memory, synapses, etc.) is a linear function of the requisite variety (Nikoli¢ 2015b). For
producing twice as many different responses (e.g., for distinguishing twice as many
different perceptual objects), twice as large a brain is needed.

However, if the bulk of knowledge is stored not in a policy that directly produces output
towards outside but in another policy (one level lower) that acts within the agent and
changes its properties as a function of feedback obtained from the environment, just a
small increase in size of the lower policy can make the agent as a whole capable of
increasing multifold the total variety of its behavior. In case of practopoietic hierarchy,
variety does not increase by a linear addition of the memory, but multiplicatively
(Nikoli¢ 2015b): The total number of theoretically possible states generated by the
agent having two policies is a product of the number of states in those two policies.

The operations of a lower policy serve a function similar to “loading” new knowledge
into a higher policy. In other words, by help of a suitable lower policy, higher policy can
flexibly re-learn new knowledge, as required. This is similar to deleting the contents of a
limited memory and replacing it with new contents as needed (or replacing a processor
or a computing module with the one needed at the moment).

An important feature of adaptive intelligent behavior is that there is no alternative
storage where the previously deleted information from higher policy could be stored as
an exact copy such that it can be easily reloaded later (unlike a computer, which can free
RAM by saving an exact copy of information on a larger hard disk, and reload this
information later). Instead, an adaptive intelligent agent reloads knowledge by re-
learning it (or re-creating that knowledge—known as anapoiesis, Nikoli¢ 2015a). This
means that the agent only stores a few clues on how to extract the needed information
from the environment i.e., it stores a learning rule for that particular content. For



example, learning to recognize a chair means then learning the rules on how to “re-
learn” quickly to use any particular chair—whenever a chair is being encountered in
agent’s environment.

Thus, in practopoietic systems much of the information storage is left to the
environment and this information, with the help of sensory inputs, is “re-loaded” into a
higher policy by the operations of a lower policy. For example, Ideatheca creates
Working knowledge.

While creating a lower policy, an agent should optimize its organization to the maximal
possible degree in order to use information available from outside as efficiently as
possible. As lower policy is acting essentially as a set of learning rules, a consequence is
that the knowledge stored in that lower policy has a much more general form than that
in the higher policy (Nikoli¢ 2015a).

In fact, calculations in Nikoli¢ (2015b) show that if our own brains would not be tri-
traversal but would have only two traverses—i.e., what is traditionally referred to as a
single policy acquired through a simple learning rule—our brains could not possibly
cope with the actual variety demands of real-life—even if everything in our brains is
maximally optimized.

The total number of combinations in which words can be arranged to form meaningful
sentences or objects to form meaningful spatial situations are very large. When
combined with the total variety of the forms of sensory inputs in which these sentences
or spatial situations can come, the resulting numbers of combinations exceed by far the
total variety that a single-policy human brain could generate given its total number of
neurons and synapses (for details see Nikoli¢ 2015b). To answer to real-life demands
and operate only as a Tz-agent, our brain would have to be many orders of magnitude
bigger than what it really is.

This brain-size advantage of T3-agents over Tz-agents is closely related to another one:
The learning time, i.e., the time needed to acquire the necessary knowledge. As any
lower level of organization stores knowledge in a more generalized form that the higher
one, it also stores it in a more condense form. This means that this knowledge can be
learned much quicker provided appropriate learning samples. In other words, a T3-
agent deals with details of a specific situation or stimulus only later when/if such
stimulus or situation occurs. In contrast, a Tz-agent must pre-learn all of those details
irrespective of whether it will ever need them later. This pre-learning requires also
larger resources on the learning set and on time needed to acquire knowledge.

In conclusion, as there is not enough memory in the human brain to store human-level
intelligence as a T2-agent, there is also not enough time and not enough samples to learn
that gigantic single-level policy that would be required in a case of Tz-organization.



The engineering challenge of Tz-agents

The biological theory in Nikoli¢ (2015a) shows that T3-organization is how our real
mind works. However, this theory does not tell us how to create strong-Al using a Tz-
organization.

The key engineering challenge is to get the needed cybernetic knowledge at Ideatheca
and more notably, Machine genome. In fact, particularly difficult to acquire is the
Machine genome, which, as we mentioned, corresponds to the learning rules needed for
learning knowledge stored in Ideatheca. To appreciate the extent of the challenge of
acquiring that knowledge, it is necessary to understand the relationship between the
policies of Al and the tri-traversal theory of the organization of biological minds.

At the very bottom of biological adaptive organization of an organism lay genes.
Knowledge stored in genes dictates our developmental and learning processes. For an
artificial T3-agent, this level of knowledge corresponds to its lowest level policy to which
we refer as Machine genome. In both cases, this knowledge constitutes the most
fundamental and most general learning rules possessed by the agent. The rest of the
agent knowledge depends on that knowledge.

From research on DNA, we know that at this level, the policy has to be relatively rich in
contents. The policy has to consist of a number of different rules for learning and
development. This is the level at which the knowledge for all developmental states is
stored. This is also where all our instincts are stored. The contents at that level make a
difference between developing a human brain as compared to e.g., a chimpanzee brain
or mouse brain.

Nevertheless, the requirements on resources at this level of organization will not be
excessive. Likely, implementation of Machine genome will require less memory than
human DNA (which takes about 700 Mb). Much of the metabolic processes that are
required in biological systems and that need to be regulated through gene expression
are not needed in silicon application. For that reason, much of the knowledge in
biological genome will be unnecessary in Machine genome. Nevertheless, plenty remains
to be in need in order to develop a fully functional intelligent system matching that of a
human. We can expect a Machine genome that emulates much of human intelligence to
take at least several 10s if not 100s of megabytes.

Application of Machine genome creates a policy at the next level, Ideatheca, which then
contains the cybernetic knowledge acquired throughout lifetime i.e., during
machinogeny. This long-term memory is the place where all our human long-term
memories are stored, including explicit facts, semantic knowledge and skills, such as
how to ride a bicycle. Ideatheca is much richer than genome and hence, demands much
bigger information storage. According to Nikoli¢ (2015b) human Ideatheca may hold on
the order of 101 to 1015 bytes of memory (100 s of terabytes). Possibly a machine will
store knowledge in a more optimized form and hence, reduce those demands.
Nevertheless, to produce intellectual and perceptual capacities that begin approaching
those of humans, a minimum of several tens or hundreds of gigabytes of information
may be required to store that policy.



Thus, instead of a small number of simple and general learning rules that are currently
being used in Al, T3- based Al will require large databases of quite elaborate learning
rules. In fact, the knowledge of T3-Al should not be thought of as being stored as
information (that some external agent needs to decode and read out) but as learning
rules (that operate independently without an external decoder).

Importantly, Ideatheca is not directly used to generate behavior as is the case for
example, in synapses of artificial neural networks. The knowledge in Ideatheca is too
general for direct production of behavior. This general knowledge needs to be applied
once again to extract an even more concrete policy at a higher level of organization.
Thus, one more traverse is needed. The policies of Ideatheca create Working knowledge.
In psychology, the processes that lead to creation of Working knowledge are referred to
as perceiving, directing attention, making decision, recalling information, or generally
thinking. The execution of policies at Ideatheca for creation of Working knowledge is
fast, usually taking less than a second in real time. For us, the contents of Working
knowledge exchange with the rhythms with which our thoughts, percepts and ideas
replace each other during the conscious flow of thought.

Finally, executing the policy at the level of Working knowledge generates the observable
behavior of the agent. This policy defines the sensory-motor loops and determines
directly how we act on the surrounding world. The amount of resources required for
this policy may be smaller or equal to that of Ideatheca.

The challenges that lay behind acquiring the appropriate knowledge in Machine genome
and Ideatheca are determined by the fact that our human capability of creating such Al
is chiefly limited by the ability to directly engineer such systems. With the exception of
very special cases, it is generally not possible for a human engineer to understand how a
small change in a genome would affect behavior of an agent. The complexity of the
underlying interactions among machine genes is simply too high for a human mind. For
example, while a human engineer can develop quite an elaborate theory of a learning
mechanism driving a T1-neural network such as e.g., back-propagation algorithm, it is
nearly impossible to do something similar for Ideatheca or a genome of a T3-agent.

Generally, we refer here to the aspects of Al functioning that a human engineer can
understand as Clear knowledge. And to the aspects of Al that a human engineer cannot
understand we refer to as Dark knowledge.

As most of machine genome corresponds to Dark knowledge, it cannot be programmed
by engineers in a way that a reinforcement learning mechanism can be programmed.
For that reason, to create T3-Al, we need yet another adaptive mechanism that is capable
of learning Machine genome and that is simple enough to be understood by human
engineers. In other words, much like we must have Clear knowledge at the bottom of
organization hierarchy of traditional T2-Al, we can create Ts-Al only if we also drive
development of that Al with Clear knowledge at the very bottom. And, because a genome
by its nature constitutes of Dark knowledge, we need one more simple policy, making
the production of Al effectively a Ts-system. This final learning mechanism must be then
simple enough for human engineers.



Another important aspect of Al development is the observation of the behavior of AL
The agent can be judged by a human observer as desirable or not, or appropriate or not.
This judgment needs not be based on understanding of how the agent operates. Rather it
is based more on intuition. The agent may run largely on Dark knowledge and yet a
human observer can tell whether the behavior is appropriate. For example, one may use
the following rule: “If the machine does something similar that I would do, this is
probably alright”. This evaluation of Al occurs by observing only the very top of the
adaptive organization i.e., the behavior. Because humans can understand it only at the
level of intuition here we refer to that aspect of Al as Opaque knowledge.

Thus, the challenge of creating T3-Al involves engineering at the level of Clear
knowledge performed at the bottom of a Ts-hierarchy, creation and operations of much
of Dark knowledge at middle levels of the hierarchy, and then giving feedback to Al for
its Opaque knowledge at the top of the hierarchy.

In T3-agents there are three levels of organization with Dark knowledge. If no shortcuts
were found to accelerate the process of learning at those levels, a mere brute force
approach to development of strong-Al would require repeating in computer simulations
something similar to the entire evolution of our biological species, which could then take
millions if not billions of years (with computational power equivalent to that of natural
evolution). This approach would certainly not be practical. The present invention offers
important shortcuts for that process.

Knowledge transfer accelerates creation of strong-Al

The genes contain very general knowledge acquired over evolution of the species. Our
instincts are a part of that general knowledge: sexual instincts, competitive instincts,
fighting instincts, cooperation instinct, when to be afraid and when not, what to eat,
when to fall in love, how to deal with different modalities of sensory inputs, how to learn
language, the instincts that eventually make us create mathematics, etc. This knowledge
has been acquired by our ancestors through evolution. Some of these ancestors are very
far ones who were not even mammals. And some of the ancestors were not even
vertebrates. This accumulated knowledge that we carry in our genes reflects a large
statistics sampled over a very long period of time and over many individuals.

To create strong-Al, a similar general knowledge needs to be acquired at the level of
Machine genome. The problem to be solved is then: How to acquire that knowledge in a
short period of time for example, within a few years or decades, rather than requiring
millions or billions of years?

Knowledge transfer theory, which is described in more details in Nikoli¢ (in
preparation), makes this possible. This theory consists of four conjectures (Mutual
adaptive pressure, Holographic knowledge, One-directional learning, and Representative
sample) and tells us that we can use the knowledge that has been already accumulated
in human genome and transfer that knowledge to a machine genome. Similarly, the
theory specifies the conditions under which it is possible to transfer that knowledge. As
aresult of that theory, it is not necessary to re-sample the nature in order to provide an
Al with machine genome. One can use the already existing knowledge in human genome



(and animals’ genome) to approximate the biological knowledge found already in
nature, which is a much faster process than acquiring this knowledge from scratch.

There are two main preconditions for transfer of knowledge from one agent to another.
The first one is that the two agents share the same environment. The two need to
interact in such a way that they become relevant environment for each other. If this
condition is satisfied, the actions of one agent (trainer) form a downward pressure for
adjustment (see Nikoli¢ 2015a) for the other agent (student). As a result, the trainer
forms an environment that gives much more direct and more effective feedback than
what would be the case without the knowledge of the trainer. Many years of experience
of the trainer can be condensed in a few instructions about which type of behavior is
good and which type should be avoided.

But to assimilate that knowledge by the student and to learn it successfully, the other
main precondition needs to be satisfied: The student’s learning mechanisms should
already share certain knowledge with the trainer’s learning mechanisms that made the
trainer learn that knowledge in the first place. Given that newly learned knowledge is
always a specific case of a general knowledge stored in learning rules, the resulting
inductive biases (Mitchell 1980) limit the transfer of knowledge to only those aspects
that can be covered by the existing learning rules. This means that only agents who have
similar learning rules—i.e., similar policies at lower levels of organization—can transfer
knowledge among each other.

Knowledge transfer theory applies to exchange of knowledge among humans, and
transfer of culture and education from older to newer generations. A schoolteacher
forms the environment that makes downward pressure for adjustment on the Ideatheca
of the student. Knowledge transfer theory applies also to selective breeding of animals,
which enable changes to a genome: the human selector provides the environmental
feedback on which genes get passed on and which not. That way, a docile dog was
created from a wild wolf. Knowledge transfer theory applies also to the common
procedures of Tz-Al, where human operator selects the training sets and correct
solutions.

As knowledge gets transferred, two agents get to share knowledge and by that token
become in Conant and Ashby terms (1970) good models of each other (Nikoli¢ in
preparation). Knowledge transfer theory applies also to the components of an agent. For
example, while working together the two brain hemispheres become good models of
each other. Similarly, neural circuits in the spinal cord become good models of circuits in
the cortex, and vice versa.

During knowledge transfer across adaptive agents (or their sub-systems), the level of
organization that will learn most extensively is the one that receives most pressure for
adjustment. The pressure for adjustment travels one step downwards whenever a
higher level of organization is not capable of resolving the pressure (Nikoli¢ 2015a).
Therefore, the degree to which the pressure will reach lower levels of organizations, and
ultimately cause learning at those levels, depends on the challenges posed by the
environment. Ideal for learning is an environment that poses adjustment pressure for
lowest levels of organization such that the type of pressure fits the induction biases of
the learning mechanisms at those levels. In other words, most stimulating are the



environments that challenge agents in ways that are most easily handled by those
agents.

A trainer can affect the environment directly only at its highest levels of organization,
but the trainer is nevertheless able to transfer knowledge from its low levels of
organization. The reason is that knowledge at higher levels is always a specific case of
knowledge at lower levels. Therefore, if the sample is large enough and representative
enough, the knowledge at the top will sufficient accurately reflect the knowledge at the
bottom. That way human behavior can reveal accurately the instincts stored in our
genes. If behavior of a trainer is sampled across a sufficiently broad set of situations and
circumstances, the adjustment pressures exerted on a student will be general enough as
to be handled efficiently only at the lowest levels of organization. As a result, a full cycle
of transfer can be closed, starting from low levels of the trainer and ending at low
organization levels of the student.

Important for shaping knowledge transfer are various forms of locking changes to
knowledge. If certain forms of changes (learning) are actively prevented, the pressure
for adjustment is directed to other structures that are not locked. For example, a trainer
may need to invest an effort not to learn from students because otherwise, by
interacting through the same environment, students may transfer to the trainer their
own knowledge (perhaps less desirable knowledge) (locking is illustrated in Figure 4).
Also, if within an agent some components are prevented from learning, other
components will be under higher learning pressure.

Finally, it is important that knowledge transfer based on interactions through shared
environment does not require the same form of implementation of knowledge storage.
Knowledge is transferred in a form of rules of what-to-do-when, but these roles can be
implemented in any form of hardware. Thus, knowledge transferred from humans to
strong-Al will not require implementation based on e.g., networks of spiking neurons.
Knowledge can be equally well transferred to other hardware and software
implementations (e.g., probability matrices).
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SUMMARY OF THE INVENTION

The present invention constitutes of a method for producing a T3-agent capable of
intelligent behavior and approaching the intelligence of human. A Ts-agent is gradually
equipped with an appropriate cybernetic knowledge stored in machine-genome. In the
same time, also according knowledge is being developed at the level of Ideatheca.

The present approach is very different from those that propose direct copying of the
biological hardware and simulating it on a computer, such as the Human Brain Project.
Instead of copying physiology and anatomy without understanding it, the present
method proposes a certain degree of understanding of organization of intelligence based
on the theory of practopoiesis and the tri-traversal theory of the mind. As a result, the
present approach allows implementing computation and memory storage for Al in a
form most suitable for the technical hardware.

The present method implements a gradual process of development of Al capabilities that
largely resembles both phylogenetical development of species and ontogentical
development of an individual. Therefore, T3-agents gradually developed to exhibit
higher and higher levels of intelligence begining from simplest capabilities, such as taxis,
to ever more elaborate ones, asymptotically approaching the high human-level
capabilities such as understanding of language and solving engineering or scientific
problems.

The present apparatus is named “Al-kindergarten” as fundamental to it is an iterative
process between interaction of Al with humans and integration of knowledge acquired
through that interaction.

Al-Kindergarten consists of three accelerators, each accelerating the development of Al
for a factor of roughly 1000. Combined, they can produce an acceleration of 10003, in
comparison to the speed with which intelligence was developed naturally by through
Darwinian evolution. The three accelerators are: Direct engineering, Playroom and
Incubator.

Direct engineering is applied whenever possible to create Clear knowledge. However,
Al-kindergarten has two main additional components that create the much required
Dark knowledge, Playroom and Incubator. In Playroom, cybernetic knowledge is
transferred from human trainers to the Al In Incubator, this knowledge is being
integrated within Al.

Both Playroom and Incubator rely on Knowledge Transfer Theory (Nikoli¢ in
preparation) to transfer knowledge from low organizational levels of one agent (e.g., a
human trainer or a machine) to another agent (a machine). The advancement of Al
unfolds through a process of knowledge transfer by human-machine interaction in
Playroom followed by Incubator-based integration of that knowledge across the sub-
components of Al. This process is iterative. One-step more advanced Al interacts again
with humans and acquires new knowledge, which is then integrated in Incubator, and so
on. Through repetition of this cycle (and occasional addition of Clear knowledge through
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directly engineered components) Al gradually increases its level of intelligence and can
approach that of human.

Direct engineering

The first 1000x accelerator relies on directly engineering those parts of Al that are
understandable to human engineering and hence, do not require other more time
consuming approaches. Knowledge that is directly engineered can be based on pure
engineering solutions but also on scientific studies of neurophysiology and behavior.

Direct engineering also involves development of computer hardware and software,
robotic hardware, and any other engineered solution that improves the functionality
and performance of Al. As only a small fraction of the total Al knowledge can be
implemented directly, two more innovative components are added to Al-Kindergarten.

Playroom

The Playroom is the second 1000x accelerator where cybernetic knowledge is
transferred from human trainers to machines. Playroom relies on Knowledge transfer
theory to harvest that knowledge and to have trainers interact with machines and by
doing so, express behaviorally the knowledge stored in their Ideathecas. That
knowledge is expressed in a form of behavioral actions. For example, a trainer may give
feedback “good” vs. “bad” in response to behavior of an Al implemented e.g., as a robot.
Here, a human trainer may give feedback on which type of stimuli should be approached
and which type should be avoided; or which kind of behavior is socially acceptable and
which not; or which behavior is potentially dangerous (for humans) and which not.

Knowledge transfer occurs through shared environment and is based on preconditions
described in Knowledge transfer theory. This transfer is not limited to button presses
indicating “good” vs. “bad” but can involve also more advanced forms of training such as
observation of actions performed by the trainer, followed then by imitation on the side
of Al As the intelligence of the T3-agent grows, so does the variety of interactions that Al
can perform with the trainer.

In each training session one unit of knowledge is from human trainers to Al students.
The training loop by which a training unit is completed requires a procedure
constituting of the following steps:

(i) Decision is made on the objectives of the training unit and the trainer is instructed
and prepared accordingly.

(ii) Each training session begins with an existing level of knowledge on the side of Al
This knowledge may be directly engineered seed knowledge (Clear knowledge) and will
normally involve a degree of previously learned knowledge (Dark knowledge)

(iii) New knowledge is guessed at the level of Working Knowledge or Ideatheca.
(iv) New knowledge is manifested at the level of Al behavior (Opaque knowledge).
(v) Feedback from the trainer is obtained.
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(vi) If feedback is positive, the guessed knowledge is retained. Otherwise it is disposed
of.

(vii) The state of retained knowledge is saved for later use in Incubator.
(viii) If the objective of the unit of learning is not achieved, go back to step (iii).

This procedure can be used to transfer knowledge from human to Al at any level of
organization of the Al-agent. The most commonly trained by this procedure will be
Working knowledge and Ideatheca. A transfer of human knowledge to Machine genome
in Playroom would be too demanding on the time of the human trainer and the number
of feedback responses that the trainer would need to give. Thus, the transition to
Machine genome from Ideatheca and Working knowledge will be performed in the
Incubator, where no interaction with humans takes place.

The function of Playroom is not to create final version of Al but to provide the training
sample for Al, the Al-agent being fully created and trained only in Incubator. So, the
function of Playroom is similar to the choice of the image database of images for
traditional T2-Al, such as e.g., a deep learning network. The training sample is organized
as knowledge structured as at least one organizational level less adaptive than the Al
that is being trained by that knowledge. So, in the classical case, it is a T1-input-output
mapping device (e.g., a deep network) created by generalized rules to represent a To-
training set of e.g., images. In Al-Kindergarten, T2 or T1-agents created in Playroom can
be considered only as samples of cybernetic knowledge. Then a T3-agent is created in
the Incubator by generalize rules to “represent” those T2-samples (or T1-samples)
collected in Playroom.

An example of the training procedure in Playroom may be a robot that we want to
improve in respect to knowledge on avoidance of large objects. Let us suppose that large
objects should be avoided, because they are potentially harmful, and small objects
should be safe to approach. We want the robot to eventually develop a reflex of avoiding
large objects but not small ones. In that case the eight steps of the Playroom procedure
could unfold as follows:

(i) We define as the objective of the learning unit a phylogenetically early aspect of
biological intelligence: a fundamental knowledge necessary to take care of agents’ safety
reflected in the following rule: “Avoid large objects but feel free to approach small and
medium-sized objects.”

(ii) We start with a pre-existing knowledge, which may be a neural network that can
map sensory inputs from camera to actuators. However, let us assume that this network
does not have a single set of particular mappings built in. Rather, the network can
produce many different mappings and this depends on which neurons in the network
are operational and which are not (adapted neurons), each subset of neurons set as
operational leading to a different mapping. If all neurons are allowed to operate, much of
the pathways cancel out each other and perhaps there is not much interesting behavior
created under such conditions. Hence, the network draws its flexibility in behavior on
choosing a subset of neurons that are allowed to operate. This choice of this subset
corresponds to the Working knowledge of the network. Ideatheca then consists of a set
of rules that determine which of the neurons will be activated and which not.
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As a part of Clear knowledge the agent is also equipped with the machinery for guess
patterns of operational neurons in Working knowledge. Alternatively, the agent guesses
rules for allowing neurons to be operational or not i.e., creates random knowledge at
Ideatheca).

In addition, we may want to develop this new reflex on top of an existing function that
the robot already performs well. For example, the robot may be previously trained to
push red balls to the left and green ones to the right. Therefore, the robot may perform
some other simple tasks while being trained for the sake of its own safety to avoid big
things (especially if they are rapidly approaching the robot) and not to be concerned
with small ones.

(iii) A guess of knowledge will be usually a combination of certain existing knowledge,
including new Clear knowledge added to the agent, and a randomly generated change to
a given policy of the agent. The Clear knowledge for guessing added to the agent in our
example may be a routine that calculates the retinal projection of the approaching
image, and a routine that calculates the speed of expansion/contraction of that retinal
image. The random changes may be made by randomly choosing a neuron that will
become operational (or not operational) within the network. At each iteration of the
learning loop a small change is made, and hence, only a small number of neurons may be
made to change their operational status.

(iv) The newly guessed knowledge in (iii) is by its nature Dark knowledge. Hence, the
only way to know the effects of the change on the behavior is for the robot to actually
generate actual behavior in response to an approaching object and during a given task.

(v) The trainer observes continuously the robot’s behavior and various other
parameters of the agent. The trainer then gives feedback on whether the newly guessed
knowledge offers an improvement towards the goal or not. In the present example, the
setup is such that the robot will in most cases generate behavior that cannot be
considered an improvement. So, to make the procedure easier on the trainer, the trainer
may be required to respond explicitly only for “good” i.e., only upon a detection of an
improvement. The response “bad” would be thus default. In other setups, the
arrangement could be the opposite, “good” being a default answer.

(vi) Important for the learning process is a decision of whether the next step of learning
will include the last change or whether the agent will be returned back to the previous
state. If an improvement was detected, then the change should be kept. If worsening of
performance was detected, then the change should be reverted. And if no change in
performance was detected, then either of the two choices may be taken.

(vii) It is necessary to keep record of all satisfactory performing policies of the agent.
This record is needed for two purposes. One is the use in Playroom, as it is possible that
the trainer may decide that it is necessary to revert back to certain previous knowledge.
The second purpose is the use of that knowledge in Incubator, as this knowledge will
generate the trainer for developing a more advanced form of Al in Incubator.

(viii) When the trainer judges that the robot is sufficiently cautious about avoiding big
objects and in the same time is not distracted in performing the red-green ball task in
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the presence of small objects, the trainer should decide that the objective is achieved
and that the session should be closed. The unit of training is completed.

A similar example can be made for an industrial robot needed to learn behavior for a
given step of industrial process. In that case, not feedback “good” vs. “bad” is given, but a
number of movement trajectories for a number of situations is given. That way a
specialized Ideatheca may be created for one industrial function, producing eventually a
robot that is much more intelligent than any robot employed in industrial process today.

Playroom is used to collect many thousands of such bits of cybernetic knowledge. The
process of giving feedback should be always automated as much as possible, but there
will always be nevertheless an irreplaceable need for human guidance, which is here
instantiated in form of a trainer.

The order in which these bits of knowledge are acquired reflects roughly phylogeny and
ontogeny of biological intelligence. Thus, the process of acquiring human-level
intelligence is gradual, starting from very simple cybernetic knowledge which is the one
that is invented by evolution phylogenetically early (and also develops ontogenetically
early) and only after this is achieved, continuing then with phylogenetically later
knowledge. In other words, much like phylogeny is approximated by ontogeny, both of
those are approximated by machinogeny.

An example of a unit of training at a later stage of Al development would be training the
Al to acquire a reflex of expressing itself through generation of a sound. This would be
an early stage in developing the capability of using language. In that case the trainer
would give a positive response whenever the Al expresses itself in a way that is
understandable and comfortable for a human user. Early on in such trainings, for
example, a general goal of a training unit may be to generate two distinctive sounds; one
when the user needs to be informed that a certain job is successfully completed by Al
and another when Al needs an approval for action from the human user.

At an even later stage of development towards human-level Al, the unit of training may
be devoted to social aspects of behavior, learning which behavior is appropriate in
which situation. For example, different type and vigor of actions should be approved by
the trainer if the people around Al appear sad, tired or distressed, then if the people
appear in good spirit, happy and full of energy.

As the stages progress more and more towards human-like intelligence, the activities
performed in Al-Kindergarten will become gradually more and more similar to activities
performed in real, human kindergarten. To transfer more of human knowledge to Al, the
robots will have to be trained through play in ways that resemble much the plays of
human children and the interactions that adults have with them. These activities may
include building things, playing roles and conversing in human language.
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Incubator

Incubator is the third 1000x accelerator where the bits of knowledge acquired in Al-

Kindergarten get integrated into a more complete Al and where the Working knowledge
and the knowledge in Ideatheca of the trainer is being transposed to more abstract rules
at the level of Machine genome. Incubator creates new, more general form of knowledge.

Incubator can be understood as generalizing the Al-training process in classical
approaches. To create a new Ti-agent (a deep network with new knowledge) from a
sample of To-knowledge (e.g., still images), a learning mechanism needs to be added to
the T1-agent, making it in total a Tz-system (e.g., deep network + learning mechanism).
In general, if we want to use Th-knowledge to create a more general Tr+1-agent, for
learning of that agent, we require a total of a Tn+2-system. Therefore, to create a Ts-
agent, we require a mechanism in Incubator that can make changes to the Machine
genome of that agent, which makes it in total a T4-system.

Thus, in Incubator in total four traverses operate. This is consistent with biological
aspects of practopoiesis, as biological agents are also T3 and creation of their genome
requires another traverse in form of evolution by natural selection (Nikoli¢ 2015a).
Hence, species is a Ts-agent. To achieve biological level of intelligence in a machine, we
need to match the biological level of adaptability.

For these functions the Incubator also relies on Knowledge transfer theory. During
knowledge transfer in Incubator, different bits and pieces of knowledge i.e., different
functions of a given policy, get to be integrated into a balanced combined agent. As the
total amount of knowledge grows, so grows the need to balance that knowledge.
Different aspects of the agent’s knowledge have to fit together as they need to operate
together in a synergy. This puts the requirement to put the agent as a whole into a
balance.

The balance is achieved when different parts of the agent satisfy Conant and Ashby’s
(1970) requirement to become good models of each other. For each function in a policy
(or for each neuron in a network) it is not the environment of the agent that constitutes
its environment but also other functions in the policy (other neurons in the network)
constitute the environment too. An agent functions well as a whole, only when its
elements are set such that they are good models of each other. Only in that case can they
work together in synergy.

The processes of balancing takes place during any activity of the agent, because during
any interaction with the environment necessarily also different components of the agent
interact among themselves. This puts them under the so-called equi-level interactions
(Nikoli¢ 2015a) and gives them the chance to learn about each other as they learn about
the surrounding world.

Incubator can be understood as a large computer simulation that simulates not only
agents who mutually interact but also their shared environment within which they
interact. Again, the trainer and the student share the environment and interact: The
trainer gives feedback and the student receives downward pressure for adjustment and
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makes changes until the performance is satisfactory. When advantageous, it is however
also possible to use a real-world environment as a part of Incubator.

While in Playroom the human trainer has more knowledge than the student, and the
student gets only bits and pieces of it, in Incubator the student has normally more
knowledge than the trainer. Trainers arrive with bits and pieces extracted in Playroom
and create students that accumulate all that knowledge. Therefore, the students trained
in Playroom can be understood also as a sort of messengers of cybernetic knowledge.
However, unlike the traditional messages that are Ty (e.g., a message written on a piece
of paper containing Clear knowledge), these messengers operate at higher organization
levels that transfer cybernetic knowledge (e.g., T2-messengers containing Dark
knowledge).

Incubator has one or more of the following eight properties:

(a) There is no human feedback involved. The training is completely machine-based.
(b) Downward pressure for adjustment is made at the level of machine-genome.

(c) The knowledge of the trainer is frozen so that the downward pressure for
adjustment is unidirectional: from trainer to student.

(d) Each feedback iteration in Incubator involves guessing of a new Machine genes
followed by expression of those and other Machine genes (i.e., entire Machine genome),
which is followed by actions of Ideatheca, followed by application of Working
knowledge. Only after application of Working knowledge and the subsequent generation
of behavior, can feedback be provided for the guessed gene.

(e) To accelerate the learning process, the old knowledge of the student is also frozen or
subjected to minimal changes. That way, new knowledge and skills learned by the
student adjust to old knowledge and skills, but not the other way around.

(f) To accelerate the learning process, the requirements for the total number of guesses

and tests are minimized by scheduling the learning into an appropriate Incubation tree:

e.g. if A, B, C, and D, are the units acquired in Playroom, we first integrate in Incubator A
and B into E, and C and D into F and only then E and F into the final agent.

(g) To accelerate the learning process and if processing power allows, simulation may be
executed with speed higher than the real-life time.

(h) To accelerate the learning process and if computational resources allow, the search
for appropriate Machine genes may be executed in different simulations simultaneously
(i.e., by the means of distributed computing).

In the example used above, we may want to use the knowledge of the robot trained in
Playroom (to avoid big objects but not small ones) to create a more capable robot. We
may transfer that knowledge from Ideatheca into the Machine genome of another robot
whose pre-existing Machine genome already provides it with an “instinct” to perform
some other task. For example, this robot may have a tendency to collect red balls and
store them away, but ignore green balls. We may want to then add another “instinct” to
Machine genome—that of avoiding big objects, especially if they approach the robot—
and make the instincts work well together in a balanced synergistic way.
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(a) A computer simulation is made of a world with robotic actuators, red and green ball
and objects of various sizes approaching the robot. Additional parts of this simulation
are the trainer and the student robots. The trainer robot gives “good” or “bad” feedback
to student robot. Otherwise, the procedure for learning a unit of knowledge is similar to
that in Playroom.

(b) The guessing process is at the level of Machine genome. This means that downward
pressure for adjustment for every “bad” feedback cannot be resolved at Ideatheca. As a
consequence the pressure moves down to Machine genome where it needs to be
resolved.

(c) To ensure that the transfer of knowledge is unidirectional and that the trainer does
not learn from the student, but only the other way around—the student learns from the
trainer—, Ideatheca of the trainer (in some cases also Working knowledge) is frozen.
This means that for trainer the operations of Machine genome (or in same cases of
Ideatheca) are switched off.

(d) As genes are being guessed in the simulation, these genes need to be put into
operation in order to test their suitability. This means that the simulated agent has to
undergo interactions with its simulated environment such that the new genes have the
chance to make developmental changes to the agent. In our example, the test will
involve satisfactory performance in respect to avoidance of large approaching objects.

(e) Also, it has to be ensured that the agent does not lose the preceding capabilities and
this is the instinct to selectively pick the red balls. To protect the old knowledge in
genes, the old genes can be frozen. That is, the gene guessing mechanism creates new
Machine genes, but does not alter the old ones. That way, according to Knowledge
transfer theory, the pressure for adjustment is put solely on the new genes. However,
important is that the old genes remain in operation. Only if these remain in operation
can the new genes become good models of the old genes—and hence, the agent as a
whole can be balanced.

In any such situation when a new “instinct” is added on top of an old one, an important
question is whether there is at least a theoretical possibility to find a solution i.e., to find
a matching new set of genes that can satisfy the function without impeding the old
function. Moreover, a question is whether this solution can be found in a reasonable
amount of time.

As these questions pertain to Dark knowledge, there is little that human engineers can
prove or disprove directly. At best, human engineers are left to guessing.

For that reason, Al-Kindergarten relies heavily on guidance from biological evolution of
capabilities. If data from phylogeny and ontogeny tell us that for both, a new step in
evolution of species and a new stage of development of an individual, a solution exists to
bring the species/individual to the new higher-level of adaptive behavior (i.e., adaptive
intelligence), then likely we will find a solution also in Incubator. In other words, if we
can establish that natural evolution has found a given solution to a certain problem
under given circumstances, this is an indicator for the engineers of Al-Kindergarten that
a solution should be possible to find also for Al-agents. This is the main reason that the
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development of Al—i.e., machinogeny—has to be informed by and follow biological
phylogeny and ontogeny.

Thus, in our example, we may ask the question of whether the picking of red balls would
be something that is evolutionary earlier than avoiding large approaching objects, or
vice versa. In practice, this may turn into the following question: If we begin incubation
with two agents of similar complexity and intelligence but one having the instinct of
picking red balls and the other having the instinct of avoiding large objects, which of the
two should be the student and which should the trainer? In other words, should Al
evolve ball picking on top of avoidance, or the other way around? For answers to such
questions we have to look into comparative biology and developmental psychology, as
good choices can considerably accelerate the development of Al

(f) Knowledge in Machine genome is necessarily more general than that in [deatheca
(Nikoli¢ 2015a). This means that many pieces of knowledge potentially stored in
Ideatheca are condensed to a fewer number of “instincts” in Machine genome. To make
the incubation process of condensing cybernetic knowledge successful and efficient, we
have to rely on Opaque knowledge to choose the units acquired in Playroom that seem
most easy to generalize.

For example, we may have acquired multiple units of knowledge in multiple Playroom
sessions. These may all be related to avoidance of large objects but acquired from
different trainers and from different types of objects (furniture, boxes, large living
beings, etc.). If our goal is to find a set of genes, that generalize among those different
bits and pieces of knowledge, we may perform an incubation sub-step that involves only
objects avoidance before we integrate that knowledge with ball picking. So, we may first
create an agent that produces an integrated Ideatheca reflecting the object avoidance
knowledge acquired from all trainers. Also, we may then create a Machine genome that
produces an “instinct” for such generalized behavior. Only after those steps are
completed, we use the agent with integrated Ideatheca as the trainer for creation of a
Machine genome that integrates that behavior with selective ball picking. In addition, we
may use the Machine genes obtained for object avoidance as guidance for guessing
Machine genes of the combined agent, and by doing so reducing significantly the search
space.

In a process of creating advanced forms of Al with many forms of “instincts”, these sub-
steps in incubation of knowledge can be organized as an Incubation tree.

(g) When we simulate the environment and the behavior of agents in Incubator, we limit
the computations to the essentials. In our example of objects approaching the agent, we
may use Graphic processing units to compute only the positions and sizes of the retinal
projections of approaching objects (or objects being approached), without having to
simulate texture details of the objects. As a result, we may be able to run the simulation
100x faster than real-life. As a consequence, we may perform the search through
Machine gene space also 100x faster than what would be required in real time.

(h) For example, we may have access to 100 simulators that we can use simultaneously

as Incubators. We may thus, be able to perform simultaneously 100 incubations that are
identical in all respects except for the part of the genome space being tested. Whenever
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we make a significant progress in one of the 100 Incubators, we may update all the
remaining 99 Incubators with that new discovered gene. We can then continue with
further search from that point in all 100 simulators. This can provide near-linear
increase in the development speed as a function of the available computational power.

Al-Kindergarten in comparison to biological processes of knowledge acquisition

There are a number of processes in the biological brain that have a similar function of
organizing knowledge to that of Incubator. In the brain, explicit knowledge is acquired
with high pace due to the operations of hippocampus. Later, this knowledge needs to
move from hippocampus into cortex. This process involves replaying sequences of
learned events, which occur during sleep. As a result, the memories move from a
concentrated place to get integrated with the rest of the brain.

The biological process assisted by hippocampus by which knowledge is acquired quickly
is similar to what happens in Playroom. The process by which this knowledge moves
into the cortex is similar to the function of Incubator. During both processes, those in the
brain and those in Al-Kindergarten, the goal is that the agent is eventually balanced i.e.,
that the components of the agent become good models of each other.

An external process of gradual acquisition of balanced knowledge is the process of
acquiring skills, such as riding a bicycle, skiing, or playing tennis. What hippocampus
does for explicit knowledge, repetitive training does for implicit knowledge of a skill.
During each practice, Ideatheca of the brain is put under downward pressure for
adjustment and changes a bit. The reason it takes long time to develop a skill is that the
new skill needs to be integrated with all of the other skills in the brain. This balancing
process takes time.

Hippocampus may serve as brain’s “hack” for the problem that some knowledge has to
be acquired with high speed and there are no possibilities for slow repetitive training of
a skill. Hippocampus may thus serve as a temporary storage of “raw”, non-balanced
knowledge of that kind (spatial knowledge, explicit memories), which is then balanced
only later, during less intensive interactions with the environment i.e., during rest. This
may involve sleep and dreaming. In a way Playroom is the hippocampus of Al-
Kindergarten. Similarly, the simulation performed in Incubator is the dream of Al-
Kindergarten.

However, there are also significant differences between the brain and Al-Kindergarten.
The brain does not change its genes. In contrast, Al-Kindergarten acquires knowledge at
a level of Machine genome. This aspect of Al-Kindergarten is related to another activity
of humans and this is selective breading of animals. By selective breading we have
domesticated many animals creating in the genome desirable cybernetic knowledge
(e.g., we turned a wild wolf into a domicile dog). Therefore, Al-Kindergarten offers much
more than the hippocampus-cortex relation. In a way, the combination of Playroom and
Incubator combines the two approaches of knowledge acquisition principles, the one
with quick acquisition and later slower integration and the one of selective breading.
The reason that they can be combined is that the knowledge acquisition rules underling
both of them are similar and are all covered by the Knowledge transfer theory.
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BRIEF DESCRIPTIONS OF THE DRAWINGS

Figure 1: Four levels of adaptive organization (four traverses, or T4) of Al-Kindergarten

necessary to create biological-like intelligence and gradually approach human-level
intelligence.

Figure 2: The end product of Al-Kindergarten is an Al with three levels of organization

(three traverses).

Figure 3: Classical Al compared to tri-traversal Al created in Al-Kindergarten from the
perspective of three types of knowledge.

Figure 4: A general principle of transferring knowledge from one agent (e.g., human
trainer) to another agent (e.g., Al) across different levels of organization.

Figure 5: The main iterative components of Al-Kindergarten.
Figure 6: Integration of knowledge in Incubator.

Figure 7: Flow diagram of a training unit in Playroom.
Figure 8: Flow diagram of an integration unit in Incubator.
Figure 9: Use of Incubation tree.

Figure 10: The parallel gradual growth in the complexity of Ideatheca and machine-
genome reflecting phylo- and ontogenesis.

Figure 11: Al-safety through limitations in super-human capabilities that Al-
Kindergarten can produce.
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DETAILED DESCRIPTION OF THE INVENTION

Figure 1. The principle of organization of artificially intelligent adaptive agents and
systems for creating such agents. In such systems not only one policy exists, but multiple
ones are organized into a hierarchy. A policy lower on the hierarchy (e.g., 103) provides
the learning rules for the one higher on the hierarchy (e.g., 102). Each policy receives
inputs from the environment (external world; 101). The learning rules such as those
underlying reinforcement learning can be considered as a special case of a (simple)
policy placed one step lower on the adaptive hierarchy relative to the policy that it helps
learn. According to the tri-traversal theory (Ts-theory) of biological organization three
such levels of policies will be needed in order to build machines that match human
capabilities in adaptive behavior (102, 103, and 104). The lowest policy on that
hierarchy (104) corresponds to the function of genes in biology. To create such a Tz-
agent, at least one more policy is needed even lower on the hierarchy (105), whose
function is to create the knowledge for 104. The function of this policy corresponds to
evolution by natural selection in biological agents. The advantage of such hierarchically
organized policies over a single policy is the total number of variety of behavior that a
system of a given size can produce (Nikoli¢ 2015b). To produce sufficiently flexible
behavior a single policy cannot suffice. A related advantage of hierarchical agents is the
learning time. In policy-hierarchical systems, it takes not only fewer resources to
implement machinery capable of intelligent behavior but also the learning time needed
to acquire correct policies is much shorter.

Figure 2. The end product of Al-Kindergarten is an Al with three levels of organization
(three traverses), shown as a knowledge graph (Nikoli¢ 2015a). The organization of
knowledge of an artificial agent that is biological-like intelligent requires possessing
policies at three different levels and thus, executing operations at three different levels
of organization. Through the operations of any of the policies more specific cybernetic
knowledge is created at the higher level of organization. This process of knowledge
creation is referred to as a traverse of knowledge (205). At the very top of the
organization is the external behavior of the agent (201). This behavior is determined by
a policy reflecting the current Working knowledge, abbreviated as WK (202). This policy
may operate with high speed, closing the sensor-actuator cycle in as short as 10
milliseconds. Working knowledge is updated slower, but it could be nevertheless often
updated several times per second. The process of updating working knowledge is the
second traverse of the agent and is referred to as anapoiesis. This knowledge
determines the current set of policies according to which the agent actually responds
behaviorally to the inputs form the environment. The policy that contains the general
knowledge of the agent about the surrounding world, which includes concepts and long-
term memories lays organizationally just bellow Working knowledge (203), and is
referred to as Ideatheca. Ideatheca provides the agent with knowledge on how to use the
current sensory inputs in order to set the Working knowledge for sensor-actuator
operations. Finally, the contents of Ideatheca are acquired throughout the lifetime of the
agent through its interactions with the environment and by application of a more
general form of knowledge stored in Machine genome (204). For a T3-agent, Machine
genome is fixed. It does not get updated. The relative amount of knowledge stored in
each policy can be indicated by the sizes of the circles in a knowledge graph. A T3-agent
will typically have much larger Ideatheca and Working knowledge than will Machine
genome.
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Figure 3. Classical Al is compared to tri-traversal Al created in Al-Kindergarten. The
two types of Al are compared from the perspective of three categories of engineering
knowledge. Left: the adaptive organization of the learning process of the classical single-
policy Al (for example, deep learning networks). Right: Adaptive organization required
for creating biological-like intelligence. Traditional Al has one traverse (from 302 to
301) and its creation requires in total two traverses (from 303 to 302 and from 302 to
301)(hence, T2-Al). In contrast, biological-like Al has in total three traverses (307 to 306
to 305 to 304) and its creating requires in total four traverses (308 to 307). Thus, to
build tri-traversal Al, a four-traversal production system is necessary.

In both cases, human engineers create the lowest traverse, which is the one acquiring
the most fundamental cybernetic knowledge driving the agent. This category of
cybernetic knowledge must be fully understandable to human engineers because
otherwise, Al could not be created. This knowledge is referred to as Clear knowledge
(indicated by white circles in the knowledge graph)(303 and 308).

In contrast, the knowledge acquired by applying Clear knowledge that interacts with the
environment (e.g., through a sample of images needed to train a deep network),
becomes quickly too big and too complex for engineers to understand. For most part, a
human cannot understand the computational operations of the agent at that level.
Classical Al has only one level of such humanly non-understandable knowledge, while
T3-Al has three such levels. This category of humanly non-understandable knowledge is
referred to as Dark knowledge (indicated by black color in knowledge graph)(302, 305,
306, 307).

When observing behavior of an Al a human can again understand it despite the fact that
Al runs largely on Dark knowledge. However, this understanding is at a different level
than the Clear knowledge. The observer does not understand the process of generating
behavior in all the detail. Nevertheless, the observer can judge intuitively whether the
behavior is appropriate for a given situation or not. By observing the Al at the very top
of its organization i.e., at the level of the behavior of the agent, a human person can make
a judgment on whether the Al performs well or not. This judgment is not based on
engineering type of understanding of how the machine works, but simply on the basis of
a comparison of machine performance with human performance. We refer to this
category of intuition-based knowledge as Opaque knowledge (indicated by gray circles in
the graphs)(301 and 304).

The two graphs illustrates that human understanding and intuition respectively deal
with the very bottom and the very top of the agent organization. The middle parts of
organization are in all cases too complex for a human mind to understand. The
implication is that, to develop T3-Al], it is not possible by human engineers to directly
create Machine genome or Ideatheca. Their minds simply cannot understand how a
change at the bottom level of organization (Machine genome) would affect the top level
(behavior).

In the case of T3-Al, the very bottom Clear knowledge level is closely related to Darwin’s
theory of evolution by natural selection in biology, and this theory is understandable to
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human mind. This is the reason that, to build biological like T3-intelligent agents, it is
necessary to employ a T4-system for manufacturing such Al Only the bottom of T4, but
not that of T3, is understandable and hence, can be directly engineered.

Figure 4. [llustration of one of the four conjectures of the Knowledge transfer theory, as
applied to transferring knowledge from one agent to another. The interaction is created
between two agents, one consisting of components 402, 403 and 404 and the other of
components 405, 406 and 407. They share the same environment (401). That way, the
two agents become environment to each other. As a result, the two agents are under
adaptive pressure to become good models of each other. Their policies tend to change
them such that they adapt to each other and hence, end up sharing knowledge.

To ensure one-directional transfer of knowledge, the knowledge of one of the two agents
can be kept frozen (indicated by locks in 403 and 404). In that case, the agent does not
adapt any longer at the given levels of organization and as a consequence, the pressure
for adjustment can be resolved only by the other agent. This has for the result that the
knowledge is transferred in one direction only. The not-frozen agent will be under the
adaptive pressure to acquire knowledge from its peer. We refer to the two as the trainer
(the one with the frozen knowledge on the left) and the student (the one that learns on
the right).

In the present example the knowledge is being transferred from Ideatheca of the trainer
(403) to the Ideatheca of the student (406), which requires functional Machine genome
(407). However, this principle can be used for transferring knowledge across any pair of
levels of organization.

The knowledge transfer theory tell us that the knowledge can be transferred from
trainer to student only if the according policy (e.g., genes) by which knowledge has been
learned by the trainer are similar to the policy of the agent. Therefore, for the transfer to
work, the genes of the trainer (404) and the student (407) must contain similar
cybernetic knowledge i.e., those at 407 need to act in similar ways as those at 404 acted
in the past in similar situations. This important property of hierarchically adaptive
systems (i.e., practopoietic systems) can be used to transfer knowledge deeply - from
genes of human trainers to machine-genes of Al

In machines, knowledge freezing can be achieved simply by switching off certain
functions of the agent. In biological trainers, knowledge freezing can be achieved
through instructions. If the trainer has enough knowledge in her/his Ideatheca (403) to
understand the behavior of the agent, the downward pressure for adjustment can be
resolved already at the level of Working knowledge (402) thus, preventing sending of
adaptive pressure downwards towards Ideatheca.

Figure 5. Al-Kindergarten consists of three main components, or three 1000x
accelerators. The Playroom and the Incubator are two novel contributions to assist
Direct engineering and make possible development of strong-Al. Direct engineering is
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used whenever possible to contribute to the advancement of Al. However, Direct
engineering is strictly limited to Clear knowledge. To create the needed Dark knowledge,
first extraction of knowledge units from human trainers is performed in the Playroom.
Then, the units of knowledge are integrated into ever-smarter machines in the
Incubator.

Playroom is the place at which human trainers give feedback to behavior of robots and
that way knowledge is transferred from humans to machines. Incubator is the place
where this newly learned knowledge is integrated with the previous knowledge and is
transferred down the adaptive hierarchy towards the machine-genes. The operations of
Playroom and Incubator are iterative. Playroom and incubator are in theory sufficient to
develop strong-Al even without subsequent direct engineering. Nevertheless, continual
work on Direct engineering additionally accelerates that process.

Figure 6. Integration of knowledge in Incubator. Knowledge transfer theory is used to
integrate unit of knowledge (trainer: 602, 603 and 604) extracted previously in
Playroom, with the previous knowledge of an agent (student: 605, 606 and 607).
Typically, knowledge is transferred from Ideatheca of the trainer (603) to the Machine
genome of the student (607). Trainer and student share the environment (601), which is
typically simulated on a computer.

The pre-existing knowledge in student’s Machine genome is frozen (indicated by a lock
in 607), making adaptive pressure on the new knowledge to become a good model of the
existing knowledge. New components of Machine genome are being created by gene
guessing mechanism (608), which operates as the lowest-level policy (lowest-level
traverse according to Nikoli¢ 2015a), and is evaluated through feedback (609) received
from the trainer and that passes through shared environment (601).

Figure 7: Flow diagram of a training unit in Playroom. A training session in Playroom
begins with identification of the tasks in form of instructions given to the trainer. Each
training unit must begin from a certain minimal level of pre-existing knowledge. In the
earliest stages of machinogeny, this knowledge may be entirely Clear i.e., entirely
engineered by human. However, a later stages the training will always begin with a
certain amount of Dark knowledge. Next, new knowledge in Ideatheca of the student is
guessed and then it is used to generate Working knowledge, which in turn generates new
behavior. The trainer observes the behavior and makes a judgment “good” or “bad” (or
gives another type of feedback). If the judgment is “bad”, the latest changes are disposed
of, and Ideatheca is reverted to the previous state. Then, new knowledge in Ideatheca is
guessed and the iteration cycle repeats.

If the generated behavior is judged as “good”, the new Ideatheca is saved and the trainer
judges whether the objectives of the training session have been achieved. In case that the
objectives have not been achieved, a change is again made in Ideatheca (additional
knowledge is guessed) but without reverting to the previous state. In other words, new
change is made on top of the previous change. The iteration cycle then continues.
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If objective is achieved, the new cybernetic knowledge stored in the resulting agent is
delivered to Incubator for integration with other units of knowledge. The training
session ends.

Figure 8: Flow diagram of an integration unit in Incubator. The flow of a session for
integration of knowledge in Incubator is in principle similar to that in Playroom, but
there are certain important differences. The trainer is in this case not a human person,
but an Al agent previously created in Playroom. Also, instead of the guessing of
Ideatheca (as was the case in Playroom), in Incubator Machine genes will be typically
guessed. This has for a consequence that to complete a test, guessed Machine genes have
to be applied to generate Ideatheca, which in turn needs to generate Working
knowledge, which is then used to produce behavior.

Behavior is not judged on the basis of observation but on the basis of comparing the
behavior created by the student to that created by the trainer. If the two behaviors are
sufficiently similar, they are considered a match, and the guessed genes are retained. If
there is no match, the guessed genes are reverted to a previous state.

Similarly, instead of a trainer judging whether the objectives of knowledge transfer have
been achieved, an overall error rate is used as a criterion, the value of which has to be
low in order to consider the session complete.

Guesses to Machine genome can be made by various mechanisms that can involve
completely random changes, recombination of previous genes, random drift of existing
genes, and others.

Once the session is complete and the new Al integrates sufficiently well the new
knowledge without impeding the previous knowledge, this improved version of Al can
be used as a replacement of all the previous versions and hence, in principle, can be
prepared for offering as a product on the market. The incubation session here ends.

Figure 9: Use of Incubation tree. The Incubation tree determines the steps in which bits
of knowledge acquired in Playroom are being integrated in the Incubator. For example,
if ten training sessions in Playroom resulted in ten new units of knowledge (a to j), those
should not be necessarily integrated one by one to the resulting Al Instead, much faster
integration may be achieved if sub-steps of integration are preformed first. Those units
of knowledge that are similar should be integrated first. In this example, pairs a and b, ¢
and d and so on, are highly similar as the two units in each pair constituted e.g., a
repetition of the same training session. These can then be integrated first as sub-steps
(901 and 902).

Next, the units a to d may be more similar to each other than units e to h, which are then
more similar to each other than units i and j. This may then justify integrating first a to d
(903) and e to h (904) before the resulting sub-steps have been finally fully integrated
(905).
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Figure 10. The process of creating ever more advanced Al machines in Al-Kindergarten
follows evolution of species and development of individual (i.e., phylogeny and
ontogeny). The process will necessarily begin with very simple behavior such as taxis
and will gradually evolve Al towards more and more advanced forms of behavior and
intelligence. These steps will require repeating largely the path of biological evolution of
behavior (phylogeny), which means that we will have to develop worm-level or insect-
level-intelligence before we move to higher mental capabilities.

This process will take advantage of the fact that biological evolution has already
performed number of experiments and has accumulated knowledge of the outcomes of
those experiments. To optimize development of Al, we want to take maximally
advantage of that available knowledge acquired through hard work in the biological
past.

The process will also follow the development of an individual (its ontogeny). We use the
fact that phylogeny and ontogeny exhibit similar sequences; Features appearing early in
phylogeny tend to appear also early in ontogeny.

This allows adding genes to “adult” Al, something not easily done in biological
individuals. This is referred to as mutation of adults. We do not need to start each new
test of a change to genome from the very beginning of the organism development (i.e.,
from its conception)—like natural evolution needed to. We can substantially accelerate
the process by mutating adults such that we follow biological phylogeny/ontogeny in
that process.

If we need to repeat some steps of development, we can do that also much more
efficiently than natural evolution did. As we save all the previous states of Al genome
and Ideatheca, we need not start from the beginning of individual’s development but can
revert Al back for any amount needed.

As aresult, in Al-Kindergarten, Machine genome and Ideatheca will grow over time
largely in parallel. As the development of Al progresses, Machine genome grows and so
does Ideatheca. Whenever, a part of Machine genome is frozen (1009, 1013) to
accelerate tests of new genes (1010, 1014), in effect also frozen is the part of Ideatheca
(1001, 1005) that is being primarily driven by those frozen parts of the genome.
Adjusted are only new parts of ideatheca, as changed by the active genes (1002, 1004).
This may accelerate the tests of new genes, but does not allow new knowledge in
Ideatheca to be balanced with the old knowledge. In order to ensure balanced Ideatheca,
after each successful acquisition of a new set of genes, the Al-agent has to interact with
its environment in the Incubator in a mode in which the entire Machine genome is
unfrozen and hence, in which all parts of the genome are active (1011 with 1012; 1015
with 1016). This interaction has to be long enough and rich enough to balance out
Ideatheca across all its components (1003 with 1004, 1007 with 1008).

A criterion for balanced out Ideatheca is a good performance of Al across a range of

tasks, old and new ones. A straightforward way for balancing out Ideatheca is to use the
new Al in real-life situations for real-life purposes.
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Figure 11. Historically, development of our technology evolves from easy emulation of
human capabilities to more difficult ones (x-axis). Along the way, the technology
asymptotically approaches human capabilities but never fully reaches them. Yet, at
every stage the technology exhibits super-human performance in the respect to the
capabilities that have been successfully emulated (y-axis). For example, a sharp stone
provides immediately super-human capabilities in ripping skin, while a hand-held
calculator provides immediately super-human capabilities in multiplying and dividing
numbers. However, all those powerful abilities of technology remain domain-limited.

Al developed by Al-Kindergarten will not be different in that respect. Al will continue to
cover more and more of the intelligence space of humans, providing at each step
immediately super-human capabilities for the given limited domain.

Importantly, Al developed in Al-Kindergarten will likely never reach the full capabilities
of a human, remaining in many respect forever limited to domain coverage of
intelligence that is sub-human. For example, it may be very difficult to implement an
equivalent of sexual drive or pleasure of eating a good meal. Thus, much like a hand-held
calculator is super human in adding numbers and is sub-human in almost everything
else, Al developed in Al-Kindergarten will similarly be always limited only to domain-
specific super human capabilities. This kind of Al will have hard time understanding
humans in many aspects, as it is unlikely to live a life that would fully correspond to a
life of a human person. Many types of experiences will be missing—some because of
technological limitations, some due to practical reasons, some due to market demands.
As a result, although such Al may be able to drive a car safely, build and fix machinery,
and solve engineering problems it will nevertheless always remain some sort of an
“autistic” Al

Importance for survival of human species

The figure also illustrates importance of each invention for survival of human species
(indicated by the relative size of the box). Every new technological step typically
provides a relatively smaller contribution in comparison to the previous one in respect
to the degree to which it assists human race in surviving and producing a large
population (indicated by a reduced width of boxes). Relatively larger steps may occur
when new significant inventions are made and technological revolutions consequently
follow. Examples may be industrial revolution and the invention of a personal computer.
Introduction of Ts-intelligence may be one such relatively large step, although probably
not nearly as important for the survival of human race as was the invention of hand axe.
Therefore, Al developed in Al-Kindergarten, although likely capable of solving
engineering problems that humans could not possibly solve (or would take a very long
time for that), will not have a huge impact on the ability of human race to survive. T3-Al
may become an important companion to humanity for producing a high quality of life for
many people but much like a hand-held calculator, it will never replace humans or
exceed the domains of human intelligence.
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Asymptotic intelligence growth despite continual super-human performance

The dynamics of approach towards human intelligence will be likely asymptotic. At the
beginning the growth of capabilities may be fast. We also may get very quickly and with
relatively little effort a T3-Al that outperforms in most tasks the today’s T1- and T2-
technology. We may also get relatively quickly machines of the level of intelligence that
beats non-human primates in many tasks. However, as we get closer and closer to
human-level intelligence, further steps will necessarily become more and more difficult.
It will take increasingly more effort to extract the necessary knowledge in Playroom and
it will require also more resources to integrate that knowledge in Incubator. The
samples of human behavior collected in a form of Playroom feedback may need to be
larger and the worlds simulated in Incubator may have to gradually become more and
more similar to those of humans.

The problems come from the fact that to be human-like intelligent, one needs to live a
human-like life and this implies also the biological body of a human—with all of its
properties and imperfectness’s. It is impossible to possess a human knowledge on what
it is like to have a flu without actually having a flu; and to have a flu, one needs a
biological body with all its physiology. Consequently, and Al that has never experienced
flu, will never be as good as a human in deciding in a new situation on what another
human suffering from flu may need. Similarly, an Al may never properly understand
what is funny in a joke about flu. And it may never appreciate properly a piece of art that
refers to the experience of flu. And so on.

Only if Al would live through a flu, and a sexual life, and would have real meals and
many, may other things, could Al know fully what it is like to be human. This will be
technically difficult and for most purposes for which we actually need Al, it will be also
unnecessary. Thus, there will be probably very little commercial need for human-replica
Al Hence, it is highly unlikely that Al-Kindergarten will ever produce such a human-
replica.

The knowledge transfer theory also poses limits. Although it allows transferring
knowledge from one agent to another, this transfer is only approximate: Something is
always lost in translation. These lost parts will be more difficult to make up for in later
stages of the development, as they will require increasingly more effort and resources to
tune up Al appropriately.

Consequently, when interacting with Al, given enough time, we will always be able to
eventually tell apart Al from a real human. That is, although it may fool us for moment,
such Al could never fully pass a Turing test.

As a consequence, T3-Al created in Al-Kindergarten will never fully reach human
intellectual capabilities such that it can replace them in all the jobs. There never will be a
situation in which there are no jobs to be done by humans. There always will be work
for us—one that could only be done well by humans i.e., by those who know what it is
like to be a human. How can a machine create art that is human appreciated if the
machine does not have all the necessary human experiences? Also, how can a machine
make a final decision on a graphical user interface for humans, if the machine cannot
really know what is it like for humans to use such an interface? How can an Al make
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decisions on any design of objects used by humans if it cannot accurately tell what it is
like to interact with those objects? Al produced in Al-Kindergarten will have hard time
making decision about what a human would prefer in new situations.

So, no matter how far we develop T3-Al and how much better then us it will become in
solving a number of engineering, science, economy, or business problems, it will never
be like us. No matter how much we try to make it like us, will never fully succeed. Al will
never be fully able to understand humans.

At the end, we humans will be making the decisions that concern humans - whenever
some new decision needs to be made regarding a question “Would a human person like
this?” or “How would a human respond in this novel situation?” Al may do engineering
but we will decide what will be engineered and what the end product will be like. Al may
do science, but we will decide what question will need to be addressed and which
results are to be kept. Al may make some decisions about economy but humans will
decide which goals will need to be reached by those decisions.

Safety

It is very important that Al is safe for humans. We want Al to largely follow Asimov’s
three laws of robotics. We do not want Al to get out of control, to become too powerful,
mean, selfish, and in same ways too intelligent such that it would cease being a servant
to mankind and become a master instead. We do not want Al to overtake the world. We
do not want to be enslaved, and certainly not eradicated. There are fears that something
like this could happen (Bostrom 2014). Clearly, we want to stop at the point at which we
create technology that serves as a subordinate companion.

Good news is that much of the safety valves needed to keep Al at bay are already built in
Al-Kindergarten by its very design. Due to the limited domains of intelligence of any
version of Al, there is no possibility for Al to exhibit super-human capabilities in the
domain that has not been trained and that is not a part of human capabilities. In
addition, through Opaque knowledge we will have a continual overview of the
developments and will be able to detect any developments that went into wrong
direction.

Al developed in Al-Kindergarten will never be able to develop super-intelligence in a
domain that it has not been trained for, or in one that has not been intended.
Development of non-human intelligence is theoretically also possible, but this would
require a different approach than Al-Kindergarten—an approach that would not use the
advantage of existing biological knowledge but would instead require application of
blind evolution by natural selection in a way that occurred naturally. In addition, one
would need to provide environment selective for such non-human intelligence. This
process would not take advantage of Playroom and Incubator acceleration and would
hence require much more time and computational resources. Probably, it would be in
the order of million times slower. For those reasons, it is unlikely that we would be even
able to develop any time soon non-human intelligence to any significant degree.
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One may argue that more important than the domain of intelligence are the motives and
goals of Al (Bostrom 2014). After all, we want to ensure that Al does not want us harm.
To address this issue it is necessary to note that motives and goals are a form of
intelligence too. Goals are a part of cybernetic knowledge as they tell an agent what
states it needs to reach to increase chances of its success. Everything that was said above
about domain specificity of intelligence applies also to motives.

Therefore, much like Al cannot spontaneously develop intelligence in new domains, it
also cannot develop new motives and instincts that would be outside the domain
defined by human trainers in Al-Kindergarten. For similar reasons, it is not possible that
harm to humanity becomes a sub-goal of some more important “end-“ goal (such as an
Al being programmed to create as many paperclips as possible and then killing humans
in order to turn them into paperclips; Bostrom 2014).

These limitations of what can be changed in terms of goals and “instincts” come from
one very fundamental feature of T3 systems and this is the hierarchical organization of
motives and goals. Lower levels of organization change the upper ones but not the other
way around. Upper levels of organization cannot directly change the lower levels. An
adaptive system cannot improve its adaptability by thinking-thorough which changes of
its genome will make changes to its behavior. The effects of gene change remain
necessarily Dark knowledge for an Al too, not only for human engineers. Moreover, by
the very nature of how practopoietic systems work, any attempts to inflict changes on
itself downwards are most likely to lead to a general loss of adaptive capabilities of the
agent and its disarray (Nikoli¢ 2015a).

Instead, adaptive systems operate such that mechanisms other then themselves decide
on the lowest-level knowledge i.e., their genome, and hence on their “instincts”. The rest
of the system is naturally drawn towards following those instincts and not defying them.
The consequence is that we can develop Machine genome of an Al such that its motives
are to exclusively help humans and humanity.

The reasons that we humans have instincts to harm each other do not come as an
automatic consequence of our intelligence. These drives of Thanatos are a result of
natural selection. Only those ancestors of us who had these instincts survived. The
environment in which we evolved dictated development of those instincts. If we make
sure that our Al does not evolve in environment that makes pressure on development of
such instincts, no such instincts will develop. By its very design, Al-Kindergarten is
envisioned to foster just the opposite: kindness and obedience to humans.

That instincts of kindness and obedience are also biologically possible to develop,
speaks the evidence that parents have a natural instinct to protect their own children
even at a risk of their own lives. Similar evidence comes from the results of selective
breeding in which we turned wild animals into domestic ones. If we could turn a
dangerous wolf into a domicile dog, we can also make sure that our Al stays in the
desirable range—because, what Al-Kindergarten does in essence is not much different
from selective breeding of animals.

In conclusion, we can develop Al that is truly a companion to humanity, not its enemy. In

fact, anything else would be very difficult to create. It is much easier to create a machine
that will protect and defend humans then one that would harm them. We will
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nevertheless have to keep an eye on safety, and possibly also regulate creation of Al by
law and international treaties. Important is that there is no imminent danger of Al-
Kindergarten created Al wanting to harm humans or surprisingly overtaking the world.
At the end, it will be always human persons who will call the major decisions in all
respects in which we use that AL
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