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Abstract Neuronal synchronization is often associated with
small time delays, and these delays can change as a function
of stimulus properties. Investigation of time delays can be
cumbersome if the activity of a large number of neurons
is recorded simultaneously and neuronal synchronization is
measured in a pairwise manner (such as the cross-correlation
histograms) because the number of pairwise measurements
increases quadratically. Here, a non-parametric statistical test
is proposed with which one can investigate (i) the consistency
of the delays across a large number of pairwise measurements
and (ii) the consistency of the changes in the time delays
as a function of experimental conditions. The test can be
classified as non-parametric because it takes into account
only the directions of the delays and thus, does not make
assumptions about the distributions and the variances of the
measurement errors.
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1 Introduction

Synchronized cortical neurons show a prominent center peak
in cross-correlation histograms (CCH; Perkel et al., 1967),

Action Editor: M. Wiener

D. Nikolić (�)
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and such synchronization can be associated with time delays,
one neuron having a tendency to fire earlier than the other
(König et al., 1995; Schneider and Nikolić, 2006). A time
delay, which is indicated by a shift of the centre peak away
from the center of the CCH (Fig. 1(A)) and can be estimated
by fitting either a damped Gabor function (König, 1994) (Fig.
1(A)) or a cosine function (Schneider and Nikolić, 2006), is
also referred to as a ‘phase shift’ or a ‘phase offset’. In the vi-
sual cortex, the magnitude and direction of phase offsets can
depend on stimulus properties (König et al., 1995; Schneider
and Nikolić, 2006; Schneider et al., 2006), and this opens the
possibility that phase offsets play a functional role in cortical
computations. In this case, the stimulus-related information
carried by phase offsets would need to be extracted by the
readout mechanisms that are sensitive to such small delays.
Such readout mechanisms have been already discussed in
the realm of sensory responses and the spike latencies that
vary as a function of stimulus properties (Hopfield, 1995;
Van Rullen and Thorpe, 2001).

Offsets extracted from a larger number of simultaneously
recorded units (single cells or multi-units) are often mutually
dependent, as they adhere to the principle of additivity: for
any three units A, B, and C, the offset between units A and
C corresponds to the sum of the offsets between units A and
B and units B and C (Schneider et al., 2006) (Fig. 1(B)).
The additivity of phase offsets can be used to determine
the temporal order in which individual units tend to fire
action potentials. Thus, for n units, the information from
n(n − 1)/2 pairwise CCHs can be condensed into a linear
arrangement of n positions on a single time axis, such that
each position indicates the preferred times at which each
unit delivers action potentials relative to the timing of the
others (Fig. 1(C) and (D)). This considerably decreases the
representational complexity of the data.
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Fig. 1 Examples of a CCH with a phase offset and an additive relation
between multiple phase offsets. (A) An example CCH taken from a
set depicted in Fig. 5 (units 4 and 14, stimulation condition 1) that is
fitted with a Gabor function. The phase offset is indicated by the shift
of the center peak away from the center of the CCH. (B) A rare case
of additivity precise to two tenths of a millisecond across three phase
offsets (a triple). This example is used to illustrate the computation of

units’ positions on a time axis and is extracted from a larger network
shown in Fig. 6(A). (C) Computation of the relative time positions of
the three units in (B) and the graphical representation of the results in
(D). The relative time positions are obtained by averaging the delays
across the columns of the delay matrix (for details see Schneider and
Nikolić, 2006)

A parametric method by Schneider et al. (2006) can test
whether the arrangement on the time axis is not arbitrary
but emerges from genuine temporal structure reflected in
consistent relationships between phase offsets. Here, the
description of the data is based on the mean and variance,
offering high test-power and relying on standard and well-
understood statistical concepts (i.e., analysis-of-variance).
The potential disadvantage of this and any other parametric
method is that it is not always robust against the violation of
assumptions about the data properties (e.g., normal distri-
bution of measurement errors, homoscedasticity of variance
and interval scaling) (Ramsey, 1980; Boneau, 1960). Thus,
it is sometimes necessary to use so-called non-parametric
statistical methods, which pose fewer requirements on the
data properties (e.g., using a, Mann-Whitney U-test instead
of a Student t-test). This article presents a method for non-
parametric investigation of additivity across phase offsets.
The method considers only the directions of phase offsets
(i.e., the signs of the measured delays) rather than their mag-
nitudes, investigates whether the directions of phase offsets
are consistent across pairs of units, and investigates the
degree to which the resulting networks of phase offsets are
transitive.

2 Transitivity

In the presently considered networks, the investigated units
of neuronal activity are represented by the nodes (i.e., single
neurons or multi-unit activity), and the directions of the phase

offsets are indicated by arrows oriented according to the
signs of the delays, sij, which are estimated for pairs of
units i and j. Thus, the arrows in the network indicate the
flow of time, the units at the ‘dull’ ends of the arrows firing
action potentials earlier than the units at the ‘sharp’ ends.
Unless stated otherwise, it is assumed that networks are fully
connected and thus, that for every pair of nodes a CCH is
computed and a phase offset is estimated.

By convention, a positive value of sij indicates that unit i
fires on average earlier than j. If the offsets are additive, for
any pair of units, ij the following holds:

si j = six + sx j , (1)

where x is the index of any other unit in the network. Note
that

sp,q = −sq,p (2)

and thus, in Eq. (1) the order of the indexes needs to be taken
in account.

If a network is transitive (in graph theory also known
as a tournament), no circular path exists. Thus, if one trav-
els through such a network by following the directions of
arrows, each node can be visited at most once, and the
travel is possible in one direction only. Examples of transitive
and non-transitive networks are shown in Fig. 2(A)–(D). In
Appendix A one can see various equations describing the
properties of transitive networks (see also Moon (1968) for
more information on tournaments).
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Fig. 2 Transitivity across phase offsets. (A) to (D) Examples of tran-
sitive and non-transitive networks that consist of three and four nodes.
Non-transitive triples in (B) and (D) are drawn in red. (E) Definition
of the error in the measurement of time delays. The magnitude of each
measured delay is assumed to be a function of the true delay and the
error of measurement. (F) and (G) Examples of the errors in addi-
tivity. (F) An atypically large error in additivity, where the network
remains nevertheless transitive because the magnitude of the error in

the directly-estimated delay between units 13 and 1 is smaller than the
indirect delay computed as a sum of the two delays via unit 14. (G)
Example of an error in additivity that produces a non-transitive relation.
Note that the additivity error is larger than either of the individual de-
lays. The examples are taken from the dataset discussed in more detail
in Section 6. (H) CCHs illustrating in more detail the large additivity
error shown in (F)

In a transitive network, each node has a unique number
of in-going (and also out-going) arrows. Thus, for a network
of n nodes, the first node is connected to the rest of the
network exclusively by out-going arrows, whose number
is n − 1. The next node in the sequence has one in-going
arrow and n − 2 out-going arrows. This continues until the
last node where all the n − 1 arrows are in-going (see Fig.
2(C) for an example). Thus, in transitive networks the nodes
can be ordered according to the number of in-going (out-
going) arrows, and this order indicates the order in which the
units fire their action potentials. For example, in Fig. 2(C),
the transitive relations in a four-node network indicate the
following firing order: 2, 4, 3 and 1. In contrast, in the non-
transitive network in Fig. 2(D), three of the units share the
same number of in-going arrows (units 1, 4, & 3), and thus,
the firing order cannot be established unambiguously.

A network that is perfectly additive (i.e., the delays sum up
exactly) is also transitive. In contrast, a transitive network is
not necessarily perfectly additive. This is because, even if the
directions of delays are consistent, their magnitudes might
jitter slightly (e.g., due to the measurement errors of phase

offsets), and thus, the network lacks perfect additivity. Never-
theless, the transitivity of a network indicates also a high de-
gree of additivity. To illustrate this point, consider a network
in which the delays are in reality perfectly additive, but due
to non-negligible measurement errors of phase offsets, the
delays fail to sum up exactly (i.e., additivity errors). Such a
network can remain transitive only if the measurement errors
are sufficiently small, so as not to exceed the magnitudes of
the delays. Otherwise, the errors would change the directions
of arrows unsystematically, resulting in a loss of transitivity
(see illustrations in Fig. 2(E)–(H)). Thus, the errors of addi-
tivity must be, in a transitive network, smaller than the sizes
of these delays. In addition, if the magnitudes of the mea-
surement errors, with which phase offsets are estimated, are
similar, irrespective of whether the delays are short or long,
transitivity can be achieved only if these errors are smaller
than the smallest delays in the network. As the estimated de-
lays are, in cortex, often shorter than 1 ms (Schneider et al.,
2006) and can be short even over large cortical distances
(Roelfsema et al., 1997), it follows that the transitivity of a
network is also a strong indicator of additivity.

Springer



J Comput Neurosci

As it will be seen shortly, transitivity is, in practice, too
strong a requirement because the networks obtained experi-
mentally are likely to contain at least a few additivity errors
that exceed the sizes of the delays and that thus, render the
networks non-transitive (see Fig. 2(G) for an example). For
this reason, it is also necessary to consider the partial tran-
sitivity of a network and investigate whether the degree to
which a network is partially transitive indicates also the de-
gree to which the network is additive.

3 Partial transitivity

Partial transitivity can be defined as the transitivity of sub-
networks that constitute the global network. The larger the
number of transitive sub-networks, the higher is the degree
of partial transitivity in the global network. In a partially
transitive network, some units will have a unique position in
the firing order, while the positions of others will be ambigu-
ous. Thus, it is possible that the network is highly structured
but that the relative firing times cannot be resolved unam-
biguously for every single pair of units (this was the finding
from the application of parametric methods in Schneider
et al., 2006). A measure of partial transitivity is proposed in
Section 5, and here we motivate the use of statistical analysis
to determine the likelihood that partial transitivity within a
network is obtained by chance.

Neuronal spiking events do not necessarily have to result
in additive positions of center peaks in CCHs. Instead, de-
pending of the particular arrangements of action potentials,
the positions of center peaks in CCHs can express relations
other than additivity (Schneider et al., 2006). Thus, additivity
is not given by default, and hence, partial transitivity may, in
principle, arise also by chance. The simulations presented in
Section 5 show that, even in networks in which the directions
of arrows are assigned randomly, one can detect a certain de-
gree of partial transitivity. Therefore, it is necessary to test
statistically the null-hypothesis stating that the directions of
arrows in the network are assigned randomly and to contrast
it to the alternative hypothesis stating that the degree of tran-
sitivity between the directions of arrows exceeds the chance
level. Only if it is highly unlikely that the observed degree
of partial transitivity is obtained by chance (e.g., p < 0.05),
can the network be considered as structured and containing
additive relations that exceed the chance level.

4 Detecting changes in firing order

As mentioned, when neuronal activity is evoked by differ-
ent stimulation conditions, neurons can change their order
of firing (König et al., 1995; Schneider and Nikolić, 2006).
To detect such changes within large networks, one needs a
statistical test to investigate whether the phase offsets are ob-

tained from networks with identical firing sequences (null-
hypothesis) or alternatively, whether the firing sequences
across the compared networks are likely to be different (al-
ternative hypothesis).

Akin to the commonly used non-parametric tests, such as
the sign-test or Wilcoxon signed-ranks test, a non-parametric
test for changes in the firing order can be created by applying
the present test of partial transitivity to a difference network:
if the network obtained under one stimulation condition is the
reference and the one under the other condition is the target,
then for each pair of nodes, ij, we subtract the magnitude of
the delay observed in the target, sij, from the corresponding
magnitude of the delay in the reference network, ŝi j . Note
that the order of indexes needs to be matched because spq =
−sqp. Hence, if R and T represent matrices of delays in the
reference and the target networks, respectively, the difference
matrix, D, is computed as:

D = R − T . (3)

The difference networks have the following interesting
properties: if two networks are perfectly additive, the dif-
ferences (or sums) between the respective delays of the net-
works will also be perfectly additive (see Appendix B.1 for
a proof). Thus, if the target and the reference networks orig-
inate from different firing sequences of the units, the differ-
ence network should contain additive structural changes in
the delays. In contrast, if the target and the reference originate
from the same firing sequences, the values in the difference
network will result solely from the random variations in the
measurement errors of phase offsets. This will result in a
random assignment of the directions of delays and thus, in
a lack of additivity. The partial transitivity within the differ-
ence network should also not exceed the chance level (see
examples of additive and non-additive difference networks
in Fig. 3). Therefore, the previously postulated transitivity
test can be also applied to difference networks to investigate
whether these networks indicate transitive changes in the
temporal structures or alternatively, whether these changes
consist solely of random variations of the measurement er-
rors.

It is important to note that transitivity (or additivity) of
the difference network does not imply transitivity of the
original networks: two non-transitive networks can produce
a transitive difference. Therefore, whenever investigating the
transitivity of difference networks, it is desirable to determine
also the transitivity of the original networks.

5 Transitivity test

To specify a statistical test of partial transitivity, two steps are
required: first, one needs to define an appropriate measure of
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Fig. 3 The properties of difference networks. Two difference networks
are illustrated, R – T1 and R – T2, that are computed by subtracting
two target networks, T1 and T2, from the same reference network, R.
The firing order in T1 is different than in R, while the firing order in
T2 is the same as in R. The delays in T2 are also the same as in R

with the exception that small changes in random directions are added
in order to mimic the measurement errors (additivity in T2 remains high
because the error does not exceed 15%). The difference network R – T1

is additive and thus, also transitive. In contrast, the difference R – T2

consists of small delays that are neither additive nor transitive

the degree to which a particular network is partially transi-
tive. Second, probabilities need to be computed for obtaining
the given degree of partial transitivity by chance.

5.1 Measure of partial transitivity

The measure of partial transitivity proposed here is based on
testing the transitivity of the smallest sub-networks within the
global network, which consist always of three nodes, being
thus referred to as triples. The transitivity of sub-networks
larger than triples is investigated indirectly because, as the
proof in Appendix B.2 shows, if all of the triples of a given
network are transitive, then the entire network is also tran-
sitive. Thus, the present measure assumes that the larger the
number of transitive triples, the larger the degree of partial
transitivity. The actual measure that is used here is expressed
as the corresponding count of non-transitive triples because,
as we will see shortly, this number is always much smaller
than the number of transitive triples and is, thus, easier to
handle. Therefore, for a network of n nodes, all the

(n
3

)
triples

are tested, and the count of the non-transitive ones is used as
an indicator of the degree to which the network is partially
transitive (see Appendix E.1 for a computational algorithm
that counts the non-transitive triples).

5.2 Probabilities to obtain partial transitivity by chance

In Appendix C, analytical computations are provided for the
probabilities that fully-connected networks, with zero and

with one non-transitive triple, will arise by chance. As these
calculations were too complex for larger numbers of triples,
the remaining probabilities were obtained by simulations.
Thus, up to 10,000,000 random networks were generated
with sizes of up to 128 nodes, where the direction of each
arrow was decided randomly with a probability of 0.5 and
independently of the other directions. The number of non-
transitive triples was then counted in every network, and
these counts were subsequently used to compute the prob-
ability distributions for observing a certain number of non-
transitive triples in a random network of a given size. The
results are shown in Fig. 4(A) for network sizes of up to 10
nodes. Note the saw-shaped distributions indicating that an
even number of non-transitive triples is slightly more likely
to be obtained than an odd number.

We next determined the maximal count of non-transitive
triples that satisfies a certain criterion of statistical signif-
icance (i.e., the critical count of non-transitive triples). To
this end, the probability distributions were integrated into
cumulative distributions (shown in Fig. 4(B)), and the crit-
ical counts of non-transitive triples were determined at the
left tails of the cumulative distributions. The resulting counts
are given in a tabular form in Appendix D for the following
significance criteria: alpha = 0.05, 0.01 and 0.001. From
these results, one can see that the critical number of non-
transitive triples depends strongly on the network size. For
example, transitivity within a network of 6 nodes (20 triples
in total) is significant at an alpha level of 0.05 only if the
network does not contain a single non-transitive triple (i.e.,
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AFig. 4 Results of simulating a
large number of networks with
randomly-assigned directions of
delays. (A) Distributions of the
probability that a particular
count of non-transitive triples
will be observed for networks of
different sizes, n (only the sizes
of 4 to 10 nodes are shown). (B)
Cumulative distributions
obtained by integrating the
probabilities in A

the whole network must be transitive). In contrast, a network
of 16 nodes can contain up to 96 non-transitive triples (out of
the total of 560) and is still partially transitive to a significant
degree, at a rigorous alpha value of 0.001.

5.3 Missing arrows

In practice, networks do not need to be always fully con-
nected but some of the measurements of phase offsets might
be missing. The present statistical tables can be used with
missing data if one takes a statistically conservative stand

and considers every triple, for which transitivity cannot be
determined, as non-transitive. A programming algorithm for
such count is provided in Appendix E.2. Note that the test
power decreases quickly with every additional missing value
and that, thus, one should make every effort to obtain the
measurements of phase offsets, the measurements with poor
precision having much more value than a lack of measure-
ment. For factors that affect the precision of phase-offset
measurements and for the type of noise that is likely to
be encountered while extracting these measurements, see
Schneider and Nikolić (2006).
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5.4 Detecting transitive sub-networks

In theory, the brain activity can be organized such that small
sub-networks are transitive while the global networks are
largely non-transitive. Consequently, transitivity could serve
as a mechanism for the formation and segregation of cell as-
semblies, where only the cells with transitive relations would
define, functionally, a neuronal assembly. To investigate such
hypotheses and to detect transitive sub-networks in large
non-transitive networks, an exhaustive search for transitive
networks is not a satisfactory option. Besides the compu-
tational difficulties, exhaustive search would result with a
large number of multiple comparisons that would increase
sharply the rate of type I error. A much better strategy would
be to test specific hypotheses that are formulated on a theo-

retical ground (e.g., cells that are stimulated by the object in
the focus of attention form unique transitive assemblies). As
usual, the alpha values should be adjusted according to the
number of multiple comparisons made.

6 Applying the test to a sample dataset

The present test was applied also to a sample dataset of
nine units and six stimulation conditions obtained from
the cat visual cortex. This dataset was acquired by using
similar methods to those reported previously in Schnei-
der and Nikolić (2006) and in Schneider et al. (2006) (see
Appendix F for more details). The original CCHs computed
across nine units and two stimulation conditions are shown

Fig. 5 CCHs computed for all pairs of multi-unit-activity spike trains
that entered the analysis, shown for two stimulation conditions. The ma-
trix is organized such that the CCH for each particular pair is located
at the intersection of the column and the row of the corresponding unit
(unit labels are indicated in the first column/row). CCHs obtained in the
stimulation condition 1 are shown in the upper-right and those obtained

in the condition 2 in the lower-left triangle. All CCHs are computed for
the time period of ± 80 ms, and the numbers in the upper left corners
indicate the maximum number of coincidences observed per stimula-
tion trial. Diagonal: orientation tuning of the units as defined by the
firing-rate responses to sinusoidal gratings drifting in twelve different
directions
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Fig. 6 The directions (arrows) and the magnitudes of phase offsets
(in milliseconds) that are estimated by the method of König (1994),
applied to the CCHs shown in Fig. 5. The arrangements of the units
within the 4 × 4 matrices reflect the spatial positions of the recording
sites on the Michigan probes, units 1 and 13 being positioned in the
deeper cortical layers than units 4 and 8, which were located more
superficially (see Appendix F for more details). If all 36 phase off-
sets resulting from 9 units are drawn in the same graph, the resulting
representation is crowded. For this reason, the phase offsets are segre-
gated into two panels. The upper panel indicates only the phase offsets

between the pairs of units that preferred similar stimulus orientations
and the lower panel between the pairs that preferred different stimulus
orientations. The orientations of the corresponding receptive fields are
schematized on the far left (for details on orientation preferences see
Fig. 5). (A) and (B) Phase offsets obtained in the stimulation conditions
1 and 2 respectively. Stimuli are sketched on top of each figure. (C) A
difference network that was computed by subtracting the network (A)
from a target network, which was extracted from all six stimulation
conditions by averaging the corresponding delays (see text for details)

in Fig. 5. The networks of phase offsets, obtained after fit-
ting Gabor functions, are shown in Fig. 6. Visual inspection
of the networks in Fig. 6 suggests both additivity of phase
offsets and a change in the temporal structure across the stim-
ulation conditions. Thus, the present non-parametric method
was applied to investigate (i) whether the partial transitivity
of phase offsets in these networks exceeds the chance level
and (ii) whether these networks indicate different firing or-
ders, i.e., whether the partial transitivity of their differences
networks exceeds the chance level.

A network of 9 nodes consists of 84 triples and, for the
alpha levels of 0.05, 0.01 and 0.001, the critical counts of
non-transitive triples are 13, 9, and 5, respectively (taken
from Appendix D). Table 1 shows the resulting counts of
the non-transitive triples. In three stimulation conditions, the
count of non-transitive triples was zero, indicating that the
network was transitive. In the remaining three conditions, the
number of non-transitive triples did not exceed two. Thus,
the networks showed highly-significant levels of partial tran-
sitivity in all six stimulation conditions, indicating that the

structures of the networks were highly additive. These re-
sults are consistent with those obtained by application of
the parametric methods on a similar dataset (Schneider and
Nikolić, 2006; Schneider et al., 2006).

The counts of non-transitive triples resulting from all
of the pairwise comparisons based on difference networks

Table 1 The counts of non-transitive triples and the corresponding
p-values resulting from the analysis of transitivity in six stimulation
conditions (Original networks) and the changes in temporal structure
relative to the network with delays averaged across the six stimulation
conditions (Difference networks)

Original networks Difference networks
Stim. Cond. Count p-value Count p-value

1 0 <0.001 8 <0.01
2 0 <0.001 2 <0.001
3 0 <0.001 4 <0.001
4 2 <0.001 10 <0.05
5 1 <0.001 9 <0.01
6 2 <0.001 3 <0.001
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Table 2 The counts of non-transitive triples in difference networks
resulting from 15 pairwise comparisons between the original six net-
works

Stim. Cond. 2 3 4 5 6

1 2 4 12 3 5
2 2 7 2 0
3 6 6 1
4 10 6
5 2

(n = 15) are shown in Table 2. Most of these counts were
larger than those obtained from the original networks (rang-
ing between 0 and 12). This increase in the number of non-
transitive triples is expected because the delays in the differ-
ence networks are much smaller than the delays in the orig-
inal networks (see the example in Fig. 6). Consequently, the
errors of measurement are more likely to affect the directions
of the small differences between delays than the directions
of the much larger original delays. Nevertheless, all 15 com-
parisons resulted in counts of non-transitive triples that were
within the range of statistical significance at the alpha level of
0.05. Therefore, the test indicates that the directions of phase
offsets changed consistently and suggests that the units might
be changing their relative firing times. It is important to be
aware of the limitations in generalization of the present find-
ings, as the present method does not consider the variance in
the positions of the units. This issue is discussed in Section 7.

By performing 15 pairwise comparisons arising from six
stimulation conditions, the chances of the type I error in
statistical inference increased considerably. To address this
issue and to minimize the number of comparisons, one can
compare the six original target networks always to the same
reference network, resulting in six rather than 15 compar-
isons. To obtain a reference network that would be suitable
for such six comparisons, an average network was computed.
Thus, for each pair of units, ij, the delays, sij, were averaged
across all six target networks. This network was transitive
(result not shown) and one of the difference networks is
shown in Fig. 6(C).

The counts of non-transitive triples in the resulting six
difference networks are shown in the rightmost column of
Table 1. The counts range between 2 and 10, and consistent
with the preceding implementation of the test, all of the com-
parisons indicate significant changes. Thus, in each of the six
datasets, neurons fired action potentials in a sequence that
was different from that in the average sequence. These re-
sults are also consistent with those reported in Schneider and
Nikolić (2006) and in Schneider et al. (2006), suggesting that
the transitivity test can be a useful tool for the investigation
of the additivity of phase offsets. It is important to note that
all of the phase delays investigated here originated from the
intrinsic sources of correlation and not from the timing rela-

tionships induced by the stimulus dynamics. This was tested
by computing shift-predictors and subtracting them from the
original CCHs. Shift-predictors are CCHs computed across
randomly-shuffled experimental trials and contain, thus, only
extrinsic correlations induced by the temporal properties of
the stimulus. This subtraction did not change the sizes of the
measured phase offsets.

7 Variability of preferred firing times

It is important to understand the limitations of the present
method. The present test investigates the consistencies across
the phase delays and has no access to the information about
the variance of the unit’s temporal positions over repeated
measurements, i.e., each phase-offset network is measured
only once. Thus, the present method investigates whether
the firing time of a unit has changed relative to the errors
of additivity/transitivity but does not address conventional
statistical questions of how large is this change relative to
the variability of the units’ firing times across repeated mea-
surements.

The units’ firing times can vary with repeated measure-
ments. To illustrate this point we show here first the vari-
ability of the center-peak positions in CCHs computed sep-
arately for single-stimulus presentations (single trials). This
analysis is usually difficult because of the insufficient num-
ber of coincident events in such CCHs, but for a pair of
units with about the highest firing rates (122.7 spikes/s,
unit 1 and 80.0 spikes/s, unit 4; the original phase offset,
− 0.72 ms; stimulation condition 1), the position of center
peaks in CCHs could be estimated in 17 out of the total of 20
CCHs. The estimated phase offsets varied from trial to trial
with a standard deviation of 0.79 ms (Fig. 7(A)), and 3 out
of 17 phase offsets showed positive values (i.e., 18% chance
of reversal in the offset direction).

The next question is whether this variability represents
the measurement error of phase offsets (e.g., due to the small
number of entries in a CCH) or the jitter in the units’ rela-
tive firing times. Only in the latter case should the changes in
phase offsets be consistent across all the pairs of units. To ad-
dress this question, phase offsets were estimated from CCHs
computed for two groups of ten trials (split by odd and even
trials according to the order of presentation). The scatter of
phase offsets for all the 36 pairs shows high correlation (Fig.
7(B)) but also small deviations from the diagonal. The three
largest deviations involve the same channel 1, which, with
the three channels 13, 3 and 4, makes differences in phase
offsets of 1.65, 1.02 and 0.78 ms, respectively. This suggests
that phase offsets might be changing consistently across the
pairs of units. This consistency was confirmed by comput-
ing the difference network that had 10 non-transitive triples,
indicating a temporal structure that is significant at the alpha
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Fig. 7 Variability of units’
relative firing times across
repeated measurements. (A)
Trial-by-trial analysis of the
phase offsets between a pair of
units 1 and 4. In three trials the
position of the center peak could
not be estimated from CCHs.
Dashed line: The average phase
offset of − 0.68 ms, a value that
is close to the − 0.72 ms
obtained from a CCH computed
on all 20 trials. (B) Scatter plot
of phase offsets obtained for odd
and even trials in condition 1
and for all 36 pairs resulting
from 9 units. (C) Scatter plot of
the relative preferred firing times
for the 9 units obtained from the
data in (B) and by applying the
method illustrated in Fig. 1(C)
and (D). The positions of units
number 1 and 13 are indicated
by the dashed circles with the
lead lines. r: Pearson’s
correlation coefficients

level of 0.05 (both original networks had zero non-transitive
triples). The changes in the relative firing order could be also
shown as a scatter plot in Fig. 7(C). As one would expect, the
two largest deviations from the diagonal involved channels
1 and 13.

In conclusion, the variability of units’ firing times should
be taken into account, and this can be achieved only by mea-
suring units’ positions repeatedly and by applying conven-
tional statistics. Therefore, a more complete understanding
of the relation between the stimulation conditions and dy-
namics of neuronal firing sequences can be obtained only by
corroborating the present analysis methods with other, more
conventional, statistical analyses.

8 Discussion

In the present study, a statistical method is developed for
testing whether the directions of phase offsets, obtained
from pairwise CCHs and computed across a large number
of simultaneously-recorded units, are organized into transi-
tive temporal structures. With this test, one can investigate
whether the directions of phase offsets are consistent and
thus, whether neurons tend to fire their action potentials in a

particular temporal sequence. In addition, the same method
can be used to investigate whether phase offsets change con-
sistently across different measurements and thus, whether
there has been a change in the order of neuronal firing. There-
fore, the present method can be a useful tool in the investiga-
tion of time delays in neuronal activity. The main interest for
such small delays arises from the possibility that they serve
as a coding mechanism that carries stimulus-related infor-
mation in a fashion similar to that found in hippocampus
(Mehta et al., 2002).

The present method requires that the data are measured
on the ordinal scale and does not pose assumptions about the
distributions of the errors or the equality of the variances. The
method can be thus classified as non-parametric. Therefore,
the method can be used in the cases in which one doubts the
outcome of the parametric methods, due to violations of as-
sumptions or because the data have been originally collected
on the ordinal scale.

The present statistical test is easy to implement once the
CCHs are computed and the phase offsets are extracted.
The count of the transitive triples is straightforward, and the
lookup table provides a convenient way to test the statistical
significance of the observed counts of non-transitive triples.
The method does not need to be applied exclusively to CCHs
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but can be used as well with any other pairwise measure of
time relationships.

It is important to note that non-parametric methods have
lower test power than the corresponding parametric ones
(e.g., Runyon and Haber, 1980). For that reason, whenever
conditions allow the, application of a parametric method
should be preferred.

In conclusion, methods for the analysis of large datasets
of time delays in neuronal activity are currently scarce, and
the apparent complexity of data resulting from multiple pair-
wise computations might discourage further analyses. The
concepts of additivity and transitivity help alleviate these
problems because they indicate redundancy across pairwise
delays. Therefore, these methods enable us to reduce the rep-
resentational complexity of the data and to simplify further
analyses.

Appendix A

The following equations can be used to compute several
quantities related to fully-connected networks.

If n is the number of the nodes in the network, then the
number of arrows in the network, m, is given by

m = n(n − 1)

2
=

(
n
2

)
. (A1)

The number of sub-networks with three nodes (triples) is

N3 = n(n − 1)(n − 2)

6
=

(
n
3

)
. (A2)

In general, the number of sub-networks with c nodes, Nc,
is

Nc = n!

c!(n − c)!
=

(
n
c

)
. (A3)

Thus, the total number of sub-networks, t, that includes net-
works of all different sizes and that can be extracted from a
network with n nodes is

t =
n∑

c=3

Nc. (A4)

The total number of different networks, d, which can be
constructed from all of the possible combinations in which
the directions of arrows can be assigned (i.e., the number of
all possible transitive and non-transitive networks), can be
expressed simply as a function of the number of arrows, m,
as follows:

d = 2m . (A5)

For example, a network of 9 nodes has 36 connections, 84
triples, and 466 sub-networks, and a total of 6.87 ∗ 1010

different networks can be constructed.

Appendix B

Appendix B.1

Claim: A sum of the respective delays between two additive
networks results in an additive network.

Proof: Consider two additive networks A and B of equal
size. Additivity requires that the delays s1, s2 and s3 of
all sub-networks of size three (triples) have the following
relation:

s A
1 + s A

2 = s A
3 and s B

1 + s B
2 = s B

3 . (B1)

The claim states that

(
s A

1 + s B
1

) + (
s A

2 + s B
2

) = s A
3 + s B

3 . (B2)

Due to the associativity of the sum, the left-side term of Eq.
(B2) can be expressed as

(
s A

1 + s A
2

) + (
s B

1 + s B
2

)
. (B3)

Thus, from (B1) it follows that Eq. (B3) equals s A
3 + s B

3 . The
same holds for the difference between networks. �

Appendix B.2

A fully-connected network will be called transitive (or a
tournament) if a circuit (i.e. a non-transitive path) does not
exist.

Claim: If in a fully-connected network there exist no circuits
of length 3, then no circuits exist.

Proof: For n = 3, this is the assumption of the theorem.
One can then use mathematical induction and show that
no circuits of length n + 1 exist. Suppose that no circuit of
length n exists. If there is a circuit of length n + 1, by the
nonexistence of circuits of lengths 3, there must be an arrow
going from the nth node to the 1st node, but this then makes
a circuit of length n, contradicting thus the nonexistence of
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Fig. B.1 Illustration for the proof that, if no circuit of length 3 exists,
then no circuit exists in a network. If circuit n + 1 exists then the arrow
indicated by the dashed line contradicts either the nonexistence of the
path of length 3 or a path of the length n (depending on the direction of
the arrow)

circuits of length n. Therefore, no circuit of length n + 1 can
exist (Fig. B.1). �

It follows that each higher-order non-transitive path must
be associated with a non-transitive triple. Therefore, to prove
that a network is transitive, it is sufficient to prove that all
the triples are transitive.

n m N d T(0) p(0) p(0), Sim. T(1) p (1) p(1), Sim.

3 3 1 8 6 0.750000 0.750822 2 0.250000 0.249178
4 6 4 64 24 0.375000 0.374744 16 0.250000 0.250611
5 10 10 1,024 120 0.117188 0.117641 120 0.117188 0.117000
6 15 20 32,768 720 0.021973 0.021893 960 0.029297 0.029500
7 21 35 2,097,152 5,040 0.002403 0.002328 8,400 0.004005 0.003985
8 28 56 268,435,456 40,320 0.000150 0.000180 80,640 0.000300 0.000290
9 36 84 68,719,476,736 362,880 0.000005 0.000004 846,720 0.000012 0.000010

Appendix C

Presented is an analytical computation of the probabilities
to obtain, randomly, a network with zero and with one non-
transitive triple. These probabilities are also compared to
those obtained by simulations (see main text for more detail
on simulations).

The total number of possible transitive networks (net-
works with zero non-transitive triples), T(0), with n-nodes is

given by

T (0) = n!. (C1)

Then, the probability that a network with a random assign-
ment of arrows (the direction of each arrow chosen randomly
with p = 0.5) will be transitive is

p(0) = T (0)/d. (C2)

d being defined in Appendix A. Number of networks with
one non-transitive triple, T(1), is given by

T (1) = 2(n − 2)!

(
n
3

)
= 2

(n − 2)!n!

3!(n − 3)!

= (n − 2)n!

3
= T (0)

n − 2

3
. (C3)

Thus, the probability that a random network will have one
non-transitive triple, p(1), is

p(1) = T (1)

d
. (C4)

The results of applying the analytically-obtained formula
to networks of sizes up to nine nodes are given in
the following table. The resulting probabilities p(0) and
p(1) are also compared to those obtained by simulations
(‘Sim’).

Appendix D

Presented are critical counts for the non-transitive triples. If
the number of non-transitive triples for a network of given
size (# Nodes) exceeds the provided count, the likelihood
that the transitivity within the network is obtained by chance
is higher than the indicated alpha level.
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Alpha

# Nodes 0.05 0.01 0.001

1 – – –
2 – – –
3 – – –
4 – – –
5 – – –
6 0 – –
7 3 1 –
8 7 4 1
9 13 9 5
10 20 16 11
11 30 25 19
12 42 36 29
13 57 50 42
14 75 67 58
15 96 87 77
16 121 111 100
17 149 138 125
18 181 169 155
19 217 205 189
20 258 244 228
21 303 289 271
22 354 338 319
23 409 393 372
24 470 453 431
25 537 518 495
26 610 590 565
27 689 668 642
28 774 752 725
29 866 843 814
30 965 941 911
31 1071 1046 1014
32 1185 1158 1125
33 1307 1278 1244
34 1436 1406 1370
35 1574 1543 1505
36 1720 1687 1648
37 1874 1841 1800
38 2038 2003 1961
39 2211 2175 2131
40 2393 2356 2311
41 2586 2547 2500
42 2788 2747 2699
43 3000 2958 2908
44 3223 3180 3128
45 3456 3412 3358
46 3701 3655 3599
47 3956 3909 3852
48 4223 4175 4116
49 4502 4452 4392
50 4793 4741 4679
51 5096 5043 4978
52 5412 5357 5291
53 5740 5684 5616
54 6081 6024 5954
55 6436 6376 6305
56 6803 6743 6670
57 7185 7123 7047
58 7581 7517 7440
59 7990 7925 7846
60 8415 8347 8266
61 8854 8785 8702
62 9308 9237 9152
63 9777 9705 9617
64 10262 10187 10099

Alpha

# Nodes 0.05 0.01 0.001

65 10762 10686 10596
66 11278 11201 11109
67 11811 11732 11636
68 12360 12279 12183
69 12926 12843 12745
70 13509 13425 13324
71 14109 14023 13921
72 14726 14638 14534
73 15361 15272 15165
74 16014 15923 15813
75 16686 16593 16482
76 17375 17281 17168
77 18084 17988 17873
78 18812 18714 18595
79 19558 19458 19340
80 20325 20223 20102
81 21111 21007 20883
82 21917 21811 21684
83 22743 22636 22508
84 23589 23480 23350
85 24457 24346 24214
86 25345 25232 25098
87 26255 26140 26003
88 27186 27069 26930
89 28138 28019 27878
90 29113 28993 28850
91 30110 29988 29842
92 31129 31005 30857
93 32172 32046 31896
94 33237 33109 32957
95 34325 34195 34039
96 35437 35305 35148
97 36573 36438 36278
98 37733 37596 37434
99 38916 38777 38613
100 40125 39984 39819
101 41357 41215 41046
102 42615 42471 42299
103 43899 43752 43578
104 45208 45059 44884
105 46542 46391 46211
106 47902 47749 47568
107 49289 49134 48950
108 50702 50545 50357
109 52142 51983 51794
110 53609 53448 53257
111 55103 54940 54747
112 56624 56459 56263
113 58173 58006 57809
114 59751 59581 59379
115 61356 61185 60981
116 62990 62816 62611
117 64653 64477 64269
118 66345 66166 65955
119 68066 67885 67672
120 69816 69634 69416
121 71596 71410 71191
122 73406 73219 72997
123 75246 75057 74832
124 77117 76925 76699
125 79019 78825 78595
126 80951 80755 80523
127 82915 82717 82482
128 84910 84709 84472
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Appendix E

Appendix E.1

Here is provided the simple programming code that can be
used to count all of the non-transitive triples within a net-
work. The code is written in a pseudo programming language
and can be easily translated into any other real programming
language.

The directions of arrows (values 1 or − 1) are assumed
to be stored in a two-dimensional array Dir of a size n × n,
where n is the number of nodes in the network, and the
indices of the array run from 1 to n. The routine requires
three nested FOR loops.

BadTripleCount=0

FOR i = 1 TO n

FOR j = i+1 TO n

FOR k = j+1 TO n

IF (Dir [i,j] = Dir [j,k])

AND IF (Dir [i,j] <> Dir [i,k])THEN

Increment (BadTripleCount)

ENDFOR

ENDFOR

ENDFOR

Appendix E.2

The following expanded algorithm deals with missing values
and assumes that a triple is not transitive if its transitivity can-
not be determined. The missing values need to be indicated
by value 0 in the array Dir.

BadTripleCount = 0

FOR i = 1 TO n

FOR j = i+1 TO n

FOR k = j+1 TO n

Comment: Count first the number of missing values

MissingValueCount = 0

IF (Dir [i,j] = 0) THEN Increment(MissingValueCount)

IF (Dir [j,k] = 0) THEN Increment(MissingValueCount)

IF (Dir [i,k] = 0) THEN Increment(MissingValueCount)

Comment: Two or more missing values

IF (MissingValueCount > = 2) THEN Increment

(BadTripleCount)

Comment: One missing value

ELSE IF (MissingValueCount = 1) THEN

BEGIN

IF (Dir [i,j] = 0) AND IF (Dir [i,k] <> Dir [j,k])

THEN Increment(BadTripleCount)

IF (Dir [j,k] = 0) AND IF (Dir [i,j] <> Dir [i,k])

THEN Increment(BadTripleCount)

IF (Dir [i,k] = 0) AND IF (Dir [i,j] = Dir [j,k])

THEN Increment(BadTripleCount)

END

Comment: No missing values

ELSE IF (Dir [i,j] = Dir [j,k])

AND IF (Dir [i,j] <> Dir [i,k])

THEN Increment(BadTripleCount)

ENDFOR

ENDFOR

ENDFOR

Actual implementations of these algorithms are pre-
pared as a Matlab m-file and as a class in C++ and
are freely available for download from http://www.
mpih-frankfurt.mpg.de/download.

Appendix F

Experimental methods

The experimental methods and the design are similar to those
reported in two other studies (Schneider and Nikolić, 2006;
Schneider et al., 2006). The results from the present dataset
have not been reported previously.

A.1 Preparation and recordings

Anesthesia was induced with ketamine and, following
the trachiotomy, was maintained with a mixture of 70%
N2O and 30% O2 and with halothane (0.6%). To prevent
eye movements, the cat was paralysed with pancuronium
bromide applied intravenously (Pancuronium, Organon,
0.15 mg kg−1 h−1). All of the experiments were conducted
according to the guidelines of the Society for Neuroscience
and German law for the protection of animals, approved by
the local government’s ethical committee, and overseen by a
veterinarian.

Multi-unit activity (MUA) was recorded by using a
silicon-based 16-channel probe (organized in a 4 × 4 spa-
tial matrix) supplied by the Center for Neural Communica-
tion Technology at the University of Michigan. The probe
had minimal inter-contact distances of 200 µm (0.3–0.5 M
impedance at 1000 Hz). Signals were amplified 1000×, fil-
tered between 500 Hz and 3.5 kHz, and digitized with 32 kHz
sampling frequency. The probe was inserted into the cortex
approximately perpendicular to the surface, which allowed
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recording simultaneously from neurons at different depths
and with different orientation preferences. Nine MUA sig-
nals responded well to visual stimuli and had orientation se-
lectivity that was appropriate for eliciting strong responses
with the presently used stimuli. All of the receptive fields
(RF) were overlapping and were, thus, all stimulated simul-
taneously by a single stimulus.

A.2. Visual stimulation

Stimuli were presented on a 21′′ computer monitor (HI-
TACHI CM813ET) with a 100 Hz refresh rate. The software
for visual stimulation was a commercially available stimula-
tion tool, ActiveSTIM (www.ActiveSTIM.com). The stimuli
were presented binocularly, and the eyes were fused by map-
ping the borders of the respective RFs and then aligning the
optical axes of the eyes with an adjustable prism placed in
front of one eye. The orientation preferences of the multi-
units used in the present analysis could be separated in two
groups. One group preferred stimuli oriented along the axis
60–240◦ (units 1, 3, 4, 7 & 8) and the other 120–300◦ (units
11, 13, 14 & 15) (see Fig. 5). The stimuli consisted either of
one white bar or of two bars moving in different directions
(60◦ difference in orientation). In the stimuli with two bars,
the bars crossed their paths at the center of the cluster of
overlapping RFs. At each trial the stimulus was presented in
total for 5 s, but only 2 s with the strongest rate responses
were used for the computation of CCHs. The bars appeared
at about 3◦ eccentricity from the center of the RF cluster
and moved with a speed of 1◦/s. In the 6 stimulation con-
ditions, the bars moved in the following directions: 1: 0◦

& 60◦; 2: 30◦; 3: 180◦ & 240◦; 4: 210◦; 5: 0◦ & 240◦; 6:
60◦ & 180◦. Each stimulation condition was presented 20
times, and the order of conditions was randomized across
presentations.
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